SMALL DIVISORS WITH SPATIAL STRUCTURE IN INFINITE DIMENSIONAL HAMILTONIAN-SYSTEMS

被引:94
作者
POSCHEL, J
机构
[1] Institut für Angewandte Mathematik, SFB 256, Universität Bonn, Bonn 1, D-5300
关键词
D O I
10.1007/BF02096763
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A general perturbation theory of the Kolmogorov-Arnold-Moser type is described concerning the existence of infinite dimensional invariant tori in nearly integrable hamiltonian systems. The key idea is to consider hamiltonians with a spatial structure and to express all quantitative aspects of the theory in terms of rather general weight functions on such structures. This approach combines great flexibility with an effective control of the vrious interactions in infinite dimensional systems. © 1990 Springer-Verlag.
引用
收藏
页码:351 / 393
页数:43
相关论文
共 27 条
[1]  
Arnol'd V. I., 1988, ENCY MATH SCI, V3
[2]  
Arnold V.I., 1963, RUSS MATH SURV+, V18, P9, DOI [DOI 10.1070/RM1963V018N05ABEH004130, 10.1070/rm1963v018n05abeh004130.510, DOI 10.1070/RM1963V018N05ABEH004130.510]
[3]  
Brjuno A.D., 1971, T MOSC MATH SOC, V25, P131
[4]   LOCALIZATION IN DISORDERED, NONLINEAR DYNAMIC-SYSTEMS [J].
FROHLICH, J ;
SPENCER, T ;
WAYNE, CE .
JOURNAL OF STATISTICAL PHYSICS, 1986, 42 (3-4) :247-274
[5]  
Kolmogorov A., 1954, DOKL AKAD NAUK SSSR, V98, P525
[6]  
KUKSIN SB, 1988, FUNCT ANAL APPL, V21, P192
[7]   CONVERGENT SERIES EXPANSIONS FOR QUASI-PERIODIC MOTIONS [J].
MOSER, J .
MATHEMATISCHE ANNALEN, 1967, 169 (01) :136-&
[8]  
Moser J., 1962, NACHR AKAD WISS G MP, V1, P1
[9]  
Moser J, 1973, STABLE RANDOM MOTION
[10]   INTEGRABILITY OF HAMILTONIAN-SYSTEMS ON CANTOR SETS [J].
POSCHEL, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (05) :653-696