PARALLEL ITERATION OF HIGH-ORDER RUNGE-KUTTA METHODS WITH STEPSIZE CONTROL

被引:103
作者
VANDERHOUWEN, PJ [1 ]
SOMMEIJER, BP [1 ]
机构
[1] CTR MATH & COMP SCI,1009 AB AMSTERDAM,NETHERLANDS
关键词
Numerical analysis; parallelism; Runge-Kutta methods;
D O I
10.1016/0377-0427(90)90200-J
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates iterated Runge-Kutta methods of high order designed in such a way that the right-hand side evaluations can be computed in parallel. Using stepsize control based on embedded formulas a highly efficient code is developed. On parallel computers, the 8th-order mode of this code is more efficient than the DOPR18 implementation of the formulas of Prince and Dormand. The 10th-order mode is about twice as cheap for comparable accuracies. © 1990.
引用
收藏
页码:111 / 127
页数:17
相关论文
共 12 条
  • [1] IMPLICIT RUNGE-KUTTA PROCESSES
    BUTCHER, JC
    [J]. MATHEMATICS OF COMPUTATION, 1964, 18 (85) : 50 - &
  • [2] CURTIS AR, 1975, J I MATH APPL, V16, P35
  • [3] CLASSICAL FIFTH-ORDER AND SEVENTH-ORDER RUNGE-KUTTA FORMULAS WITH STEPSIZE CONTROL
    FEHLBERG, E
    [J]. COMPUTING, 1969, 4 (02) : 93 - &
  • [4] HAIRER E, 1978, J I MATH APPL, V21, P47
  • [5] HAIRER E, 1987, SOLVING ORDINARY DIF, V1
  • [6] COMPARING NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS
    HULL, TE
    ENRIGHT, WH
    FELLEN, BM
    SEDGWICK, AE
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1972, 9 (04) : 603 - 637
  • [7] ISERLES A, 1988, DAMTP1988NA12 U CAMB
  • [8] JACKSON K, 1988, IN PRESS PARALLEL RU
  • [9] LIE I, 1988, 387 U TRONDH DIV NUM
  • [10] NORSETT SP, 1989, LECTURE NOTES MATH