EXTENSION OF HOLOMORPHIC-FUNCTIONS

被引:0
作者
MAZZILLI, E
机构
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1995年 / 321卷 / 07期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the extension of holomorphic functions defined on a pion necessarily transverse subvariety of the real or complex ellipsoid. If the data has given regularity in L(p) norm With 1 less than or equal to p less than or equal to +infinity, we describe the regularity of the extension. We show that the regularity decay depends on the interaction between the complex geometry of the ellipsoid boundary and the given subvariety, although the Cauchy-Riemann equation can be solved in ellipsoids with some gain of regularity.
引用
收藏
页码:831 / 836
页数:6
相关论文
共 8 条
[1]  
AMAR E, 1983, B SCI MATH, V107, P25
[2]  
AMAR E, 1984, CR ACAD SCI PARIS 1, V299
[3]   A FORMULA FOR INTERPOLATION AND DIVISION IN CN [J].
BERNDTSSON, B .
MATHEMATISCHE ANNALEN, 1983, 263 (04) :399-418
[4]   SUBELLIPTIC-ESTIMATES AND FAILURE OF SEMI CONTINUITY FOR ORDERS OF CONTACT [J].
D'ANGELO, JP .
DUKE MATHEMATICAL JOURNAL, 1980, 47 (04) :955-957
[5]  
MCNEAL J, CONVEX DOMAINS FINIT
[6]   BOUNDARY-BEHAVIOR OF THE BERGMAN-KERNEL FUNCTION IN C2 [J].
MCNEAL, JD .
DUKE MATHEMATICAL JOURNAL, 1989, 58 (02) :499-512
[7]   ON THE EXTENSION OF L2 HOLOMORPHIC-FUNCTIONS [J].
OHSAWA, T ;
TAKEGOSHI, K .
MATHEMATISCHE ZEITSCHRIFT, 1987, 195 (02) :197-204
[8]  
RANGE M, 1978, ANN SCUOLA NORM S PI, P247