AN ALGORITHM USING THE HR PROCESS FOR SOLVING THE CLOSED-LOOP EIGENVALUES OF A DISCRETE-TIME ALGEBRAIC RICCATI EQUATION

被引:1
作者
LU, LZ [1 ]
JI, XZ [1 ]
JIANG, H [1 ]
机构
[1] UNIV WATERLOO,DEPT COMP SCI,WATERLOO N2L 3G1,ONTARIO,CANADA
关键词
D O I
10.1109/9.310051
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present a numerical approach to the closed-loop spectrum of a discrete-time algebraic Riccati equation. The concerned symplectic pencil N - lambdaL is proven to be equivalent to the pencil P - lambdaQ, where P is skew -symmetric and Q is symmetric. Then, the HR process, which can be viewed as a generalization of the QR method, is applied to compute the eigenvalue of P - lambdaQ. Some numerical examples are included.
引用
收藏
页码:1682 / 1685
页数:4
相关论文
共 15 条
[1]  
Anderson B. D. O., 1979, OPTIMAL FILTERING
[2]   EIGENVALUES OF AX=LAMBDA-BX FOR REAL SYMMETRIC MATRICE-A AND MATRICE-B COMPUTED BY REDUCTION TO A PSEUDOSYMMETRIC FORM AND THE HR PROCESS [J].
BREBNER, MA ;
GRAD, J .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1982, 43 (MAR) :99-118
[3]  
BUNSEGERSTNER A, 1981, LINEAR ALGEBRA APPL, V35, P155, DOI 10.1016/0024-3795(81)90271-8
[4]   A GENERALIZATION OF THE MATRIX-SIGN-FUNCTION SOLUTION FOR ALGEBRAIC RICCATI-EQUATIONS [J].
GARDINER, JD ;
LAUB, AJ .
INTERNATIONAL JOURNAL OF CONTROL, 1986, 44 (03) :823-832
[5]   SCALING OF THE DISCRETE-TIME ALGEBRAIC RICCATI EQUATION TO ENHANCE STABILITY OF THE SCHUR SOLUTION METHOD [J].
GUDMUNDSSON, T ;
KENNEY, C ;
LAUB, AJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (04) :513-518
[6]  
JI X, 1988, J FUDAN U NATUR SCI, V27, P149
[8]  
Laub A. J., 1986, Computational and Combinatorial Methods in Systems Theory, P213
[10]  
MEHRMANN V, 1991, LECTURE NOTES CONTRO, V163