ASYMPTOTIC ANCILLARITY AND CONDITIONAL INFERENCE FOR STOCHASTIC-PROCESSES

被引:6
作者
SWEETING, TJ
机构
关键词
ASYMPTOTIC CONDITIONAL INFERENCE; ASYMPTOTIC ANCILLARITY; NONERGODIC MODELS; MAXIMUM LIKELIHOOD ESTIMATOR; SCORE STATISTIC;
D O I
10.1214/aos/1176348542
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Simple conditions on the observed information ensure asymptotic normality of the conditional distributions of the randomly normed score statistic and maximum likelihood estimator given a suitable asymptotically ancillary statistic. In particular, asymptotic normality holds conditional on any asymptotically ancillary statistic asymptotically equivalent to observed information. The results apply to inference from a general stochastic process and are of particular relevance in the case of nonergodic models.
引用
收藏
页码:580 / 589
页数:10
相关论文
共 14 条
[1]   ASYMPTOTIC CONDITIONAL INFERENCE FOR REGULAR NONERGODIC MODELS WITH AN APPLICATION TO AUTOREGRESSIVE PROCESSES [J].
BASAWA, IV ;
BROCKWELL, PJ .
ANNALS OF STATISTICS, 1984, 12 (01) :161-171
[2]  
BASAWA IV, 1983, LECTURE NOTES STATIS, V17
[3]  
DAWID AP, 1991, J ROY STAT SOC B MET, V53, P79
[4]  
EFRON B, 1978, BIOMETRIKA, V65, P457, DOI 10.2307/2335893
[6]  
FEIGIN PD, 1979, BIOMETRIKA, V66, P279
[7]   APPLICATION OF THE RADON-NIKODYM THEOREM TO THE THEORY OF SUFFICIENT STATISTICS [J].
HALMOS, PR ;
SAVAGE, LJ .
ANNALS OF MATHEMATICAL STATISTICS, 1949, 20 (02) :225-241
[8]  
JENSEN JL, 1987, SCAND J STAT, V14, P305
[9]  
MCCULLAGH P, 1984, BIOMETRIKA, V71, P233
[10]  
SWEETING T.J, 1989, J THEOR PROBAB, V2, P461