THE DISTRIBUTION OF EIGENVALUES OF GRAPHS

被引:17
作者
CAO, DS [1 ]
YUAN, H [1 ]
机构
[1] E CHINA NORMAL UNIV,DEPT MATH,SHANGHAI 200062,PEOPLES R CHINA
关键词
D O I
10.1016/0024-3795(93)00135-M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that every limit point of the kth largest eigenvalues of graphs is a limit point of the (k + 1)th largest eigenvalues, and we find out the smallest limit point of the kth largest eigenvalues and an upper bound of the limit points of the kth smallest eigenvalues. For k greater than or equal to 4, we prove that there exists a gap beyond the smallest limit point in which no point is the limit point of the kth largest eigenvalues. For the third largest eigenvalues of a graph G with at least three vertices, we obtain that (1) lambda(3)(G) < -1 iff G congruent to P-3; (2) lambda(3)(G) = -1 iff G(c) is isomorphic to a complete bipartite graph plus isolated vertices: (3) there exist no graphs such that -1 < lambda(3)(G) < (1 - root 5)/2. Consequently, if G(c) is not a complete bipartite graph plus isolated vertices, lambda(3)(G) greater than or equal to lambda(3)(D-n*), where D-n* is the complement of the double star S(1, n - 3).
引用
收藏
页码:211 / 224
页数:14
相关论文
共 13 条
[1]  
[Anonymous], 1990, LINEAR MULTILINEAR A, DOI DOI 10.1080/03081089008818026
[2]  
CAO D, IN PRESS GRAPHS CHAR
[3]   LOWER BOUNDS ON THE SPECTRA OF SYMMETRIC-MATRICES WITH NONNEGATIVE ENTRIES [J].
CONSTANTINE, G .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1985, 65 (FEB) :171-178
[4]  
Cvetkovic D.M., 1982, ARS COMBINATORIA, V14, P225
[5]  
Cvetkovic D.M., 1980, SPECTRA GRAPHS THEOR, V87
[6]   THE LIMIT POINTS OF EIGENVALUES OF GRAPHS [J].
DOOB, M .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 114 :659-662
[7]  
Doob M., 1991, ABSTR AM MATH SOC, V12, P450
[8]  
Hoffman A.J., 1977, ARS COMBINATORIA, V3, P3
[9]  
Hoffman AJ, 1970, GRAPH THEORY ITS APP, P78
[10]  
HOFFMAN AJ, 1972, LECT NOTES MATH, V303, P165