ON THE CONVERGENCE OF A FINITE-ELEMENT METHOD FOR A NONLINEAR HYPERBOLIC CONSERVATION LAW

被引:4
作者
JOHNSON, C [1 ]
SZEPESSY, A [1 ]
机构
[1] GOTHENBURG UNIV,S-41296 GOTHENBURG,SWEDEN
关键词
D O I
10.2307/2008320
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:427 / 444
页数:18
相关论文
共 50 条
[21]   Study of the convergence of the finite-element method for parabolic equations with a nonlinear nonlocal spatial operator [J].
Glazyrina, O. V. ;
Pavlova, M. F. .
DIFFERENTIAL EQUATIONS, 2015, 51 (07) :872-885
[22]   Study of the convergence of the finite-element method for parabolic equations with a nonlinear nonlocal spatial operator [J].
O. V. Glazyrina ;
M. F. Pavlova .
Differential Equations, 2015, 51 :872-885
[23]   ON CONVERGENCE OF THE FINITE-ELEMENT METHOD FOR THE WAVE-EQUATION [J].
RAUCH, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (02) :245-249
[24]   STABILITY AND CONVERGENCE OF SOME FINITE-ELEMENT ALGORITHMS FOR NONLINEAR ELASTODYNAMICS [J].
HAMDAN, SM ;
PATAMAPONGS, N .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1985, 21 (06) :975-999
[25]   CONVERGENCE OF FINITE-ELEMENT METHOD IN NEUTRON-TRANSPORT [J].
MARTIN, WR .
TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1975, 22 (NOV16) :251-252
[26]   ON THE EXISTENCE, UNIQUENESS AND CONVERGENCE OF NONLINEAR MIXED FINITE-ELEMENT METHODS [J].
CHEN, Z .
MATEMATICA APLICADA E COMPUTACIONAL, 1989, 8 (03) :241-258
[27]   NONLINEAR CORNER PROBLEMS AND THE FINITE-ELEMENT METHOD [J].
DOBROWOLSKI, M .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1984, 64 (05) :T270-T271
[28]   A FINITE-ELEMENT METHOD FOR THE NONLINEAR TRICOMI PROBLEM [J].
AZIZ, AK ;
LEMMERT, R ;
SCHNEIDER, M .
NUMERISCHE MATHEMATIK, 1990, 58 (01) :95-108
[29]   NONLINEAR FRAME ANALYSIS BY FINITE-ELEMENT METHOD [J].
OSTERRIEDER, P ;
RAMM, E .
JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 1989, 115 (02) :497-498
[30]   NONLINEAR PANEL FLUTTER BY FINITE-ELEMENT METHOD [J].
SARMA, BS ;
VARADAN, TK .
AIAA JOURNAL, 1988, 26 (05) :566-574