ON THE CONVERGENCE OF A FINITE-ELEMENT METHOD FOR A NONLINEAR HYPERBOLIC CONSERVATION LAW

被引:4
作者
JOHNSON, C [1 ]
SZEPESSY, A [1 ]
机构
[1] GOTHENBURG UNIV,S-41296 GOTHENBURG,SWEDEN
关键词
D O I
10.2307/2008320
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:427 / 444
页数:18
相关论文
共 50 条
[11]   CONVERGENCE AND STABILITY OF NONLINEAR FINITE-ELEMENT EQUATIONS [J].
CHUNG, TJ .
AIAA JOURNAL, 1975, 13 (07) :963-966
[12]   H FINITE-ELEMENT METHOD FOR HYPERBOLIC PROBLEMS [J].
FORTIN, M ;
FORTIN, A .
RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1989, 23 (04) :593-596
[13]   CONVERGENCE ANALYSIS FOR AN ELEMENT-BY-ELEMENT FINITE-ELEMENT METHOD [J].
LI, ZP ;
REED, MB .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1995, 123 (1-4) :33-42
[14]   CONVERGENCE OF THE VISCOSITY METHOD FOR A NONSTRICTLY HYPERBOLIC CONSERVATION LAW [J].
LU, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 150 (01) :59-64
[15]   CONVERGENCE OF A SHOCK-CAPTURING STREAMLINE DIFFUSION FINITE-ELEMENT METHOD FOR A SCALAR CONSERVATION LAW IN 2 SPACE DIMENSIONS [J].
SZEPESSY, A .
MATHEMATICS OF COMPUTATION, 1989, 53 (188) :527-545
[16]   ON MAXIMUM NORM CONVERGENCE OF THE FINITE-ELEMENT METHOD [J].
YSERENTANT, H .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1985, 65 (02) :91-100
[17]   THE FINITE-ELEMENT METHOD FOR NONLINEAR ELASTICITY [J].
LI, ZP .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 1989, 7 (01) :1-14
[18]   A new approach to convergence analysis of linearized finite element method for nonlinear hyperbolic equation [J].
Wang, Junjun ;
Guo, Lijuan .
BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
[19]   A new approach to convergence analysis of linearized finite element method for nonlinear hyperbolic equation [J].
Junjun Wang ;
Lijuan Guo .
Boundary Value Problems, 2019
[20]   A HIGH ORDER ADAPTIVE FINITE ELEMENT METHOD FOR SOLVING NONLINEAR HYPERBOLIC CONSERVATION LAWS [J].
Xu, Zhengfu ;
Xu, Jinchao ;
Shu, Chi-Wang .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2011, 29 (05) :491-500