MOTIVES OVER TOTALLY-REAL FIELDS AND P-ADIC L-FUNCTIONS

被引:27
作者
PANCHISHKIN, AA [1 ]
机构
[1] UNIV GRENOBLE 1, INST FOURNIER, F-38402 ST MARTIN DHERES, FRANCE
关键词
MOTIVES; NEWTON POLYGON; HODGE POLYGON; P-ADIC L-FUNCTION; CRITICAL VALUES; PERIODS;
D O I
10.5802/aif.1424
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Special values of certain L functions of the type L(M, s) are studied where M is a motive over a totally real field F with coefficients in another field T, and L(M, s) = Pi (p) Lp (M, Np--s) is an Euler product P running through maximal ideals of the maximal order O-F of F and Lp (M, X)(-1) = (1 - alpha((1))(p)X).(1 - alpha((2))(p)X)....(1 - alpha(d)(p)X) = 1 + A(1)(p)X + ... + Ad(p)X(d) being a polynomial with coefficients in T. Using the Newton and the Hedge polygons of M one formulate a conjectural criterium for the existence of a p-adic analytic continuation of the special values. This conjecture is verified in a number of cases related to Hilbert modular forms.
引用
收藏
页码:989 / 1023
页数:35
相关论文
共 89 条
[1]  
Amice Y., 1975, ASTERISQUE, V24-25, P119
[2]   MOTIVES FOR HILBERT MODULAR-FORMS [J].
BLASIUS, D ;
ROGAWSKI, JD .
INVENTIONES MATHEMATICAE, 1993, 114 (01) :55-87
[3]   ON THE CRITICAL-VALUES OF HECKE L-SERIES [J].
BLASIUS, D .
ANNALS OF MATHEMATICS, 1986, 124 (01) :23-63
[4]   CRITICAL-VALUES OF CERTAIN TENSOR PRODUCT L-FUNCTIONS [J].
BLASIUS, D .
INVENTIONES MATHEMATICAE, 1987, 90 (01) :181-188
[5]  
CARAYOL H, 1986, ANN SCI ECOLE NORM S, V19, P409
[6]   NEGATIVE INTEGRAL VALUES OF ZETA-FUNCTIONS AND P-ADIC ZETA-FUNCTIONS [J].
CASSOUNOGUES, P .
INVENTIONES MATHEMATICAE, 1979, 51 (01) :29-59
[7]  
COATES J, 1987, J REINE ANGEW MATH, V375, P104
[8]  
Coates J, 1989, ADV STUD PURE MATH, V17, P23
[9]   VALUES OF ABELIAN L-FUNCTIONS AT NEGATIVE INTEGERS OVER TOTALLY-REAL FIELDS [J].
DELIGNE, P ;
RIBET, KA .
INVENTIONES MATHEMATICAE, 1980, 59 (03) :227-286
[10]  
DELIGNE P, 1971, LECT NOTES MATH, V179, P139