HAUSDORFF MEASURE OF TRAJECTORIES OF MULTIPARAMETER FRACTIONAL, BROWNIAN-MOTION

被引:89
作者
TALAGRAND, M [1 ]
机构
[1] OHIO STATE UNIV,DEPT MATH,COLUMBUS,OH 43210
关键词
HAUSSDORFF DIMENSION; BROWNIAN MOTION;
D O I
10.1214/aop/1176988288
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider 0 < alpha < 1 and the Gaussian process Y(t) on R(N) with covariance E(Y(t)Y(s)) = \t\(2 alpha) + \s\(2 alpha) - \t - s\(2 alpha), where \t\ is the Euclidean norm of t. Consider independent copies X(1),...,X(d) Of Y and the process X(t) = (X(1)(t),...,X(d)(t)) valued in R(d). In the transient case (N < alpha d) we show that a.s. for each compact set L of R(N) with nonempty interior, we have 0 < mu(phi)(X(L)) < infinity, where mu(phi), denotes the Hausdorff measure associated with the function (phi(epsilon) = epsilon(N/alpha) log log(1/epsilon). This result extends work of A. Goldman in the case alpha = 1/2; the proofs are considerably simpler.
引用
收藏
页码:767 / 775
页数:9
相关论文
共 9 条
[1]  
CIESIELSKI Z, 1962, T AM MATH SOC, V10, P434
[2]  
GOLDMAN A, 1988, ASTERISQUE, V167
[3]  
Kahane J. P., 1985, SOME RANDOM SERIES F
[4]  
LEDOUX M, 1991, PROBABILITIES BANACH
[5]  
LEVY P, 1953, GIORMALE I ITAL ALTU, V16, P13
[6]   LOCAL TIMES FOR GAUSSIAN VECTOR FIELDS [J].
PITT, LD .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1978, 27 (02) :309-330
[7]  
Ray D., 1963, T AM MATH SOC, V106, P436
[8]  
TAGAGRAND M, 1993, GEOM FUNCT ANAL, V3, P502
[9]  
TAYLOR SJ, 1964, P CAMB PHILOS SOC, V60, P253