SOLUTION STRUCTURE OF HUMAN THIOREDOXIN IN A MIXED DISULFIDE INTERMEDIATE COMPLEX WITH ITS TARGET PEPTIDE FROM THE TRANSCRIPTION FACTOR NF-KAPPA-B

被引:207
|
作者
QIN, J [1 ]
CLORE, GM [1 ]
KENNEDY, WM [1 ]
HUTH, JR [1 ]
GRONENBORN, AM [1 ]
机构
[1] NIDDKD,CHEM PHYS LAB,BETHESDA,MD 20892
基金
美国国家卫生研究院;
关键词
DISULFIDE-BONDED INTERMEDIATE; HUMAN THIOREDOXIN; TRANSCRIPTION FACTOR NF-KAPPA-B;
D O I
10.1016/S0969-2126(01)00159-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Human thioredoxin is a 12 kDa cellular redox protein that plays a key role in maintaining the redox environment of the cell. It has recently been shown to be responsible for activating the DNA-binding properties of the cellular transcription factor, NF kappa B, by reducing a disulfide bond involving Cys62 of the p50 subunit. Using multidimensional heteronuclear-edited and heteronuclear-filtered NMR spectroscopy, we have solved the solution structure of a complex of human thioredoxin and a 13-residue peptide extending from residues 56-68 of p50, representing a kinetically stable mixed disulfide intermediate along the reaction pathway. Results: The NF kappa B peptide is located in a long boot-shaped cleft on the surface of human thioredoxin delineated by the active-site loop, helices alpha 2, alpha 3 and alpha 4, and strands beta 3 and beta 4. The peptide adopts a crescent-like conformation with a smooth 110 degrees bend centered around residue 60 which permits it to follow the path of the cleft. Conclusions: In addition to the intermolecular disulfide bridge between Cys32 of human thioredoxin and Cys62 of the peptide, the complex is stabilized by numerous hydrogen-bonding, electrostatic and hydrophobic interactions which involve residues 57-65 of the NF kappa B peptide and confer substrate specificity. These structural features permit one to suggest the specificity requirements for human thioredoxin-catalyzed disulfide bond reduction of proteins.
引用
收藏
页码:289 / 297
页数:9
相关论文
共 41 条