CONSTRUCTION OF CARTESIAN AUTHENTICATION CODE FROM ORTHOGONAL SPACES OVER A FINITE FIELD OF ODD CHARACTERISTIC

被引:6
作者
Li, Zengti [1 ]
Gao, Suogang [2 ]
Wang, Zhong [3 ]
Thuraisingham, Bhavani [3 ]
Wu, Weili [3 ]
机构
[1] Langfang Normal Coll, Dept Math, Langfang 065000, Peoples R China
[2] Hebei Normal Univ, Math & Inf Coll, Shijiazhuang 050016, Hebei, Peoples R China
[3] Univ Texas Dallas, Dept Comp Sci, Richardson, TX 75080 USA
基金
美国国家科学基金会;
关键词
Authentication code; orthogonal space; classical groups;
D O I
10.1142/S1793830909000075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct a Cartesian authentication code from subspaces of orthogonal space F-q((2v+1)) of odd characteristic and compute its parameters. Assuming that the encoding rules of the transmitter and the receiver are chosen according to a uniform probability distribution, the probabilities of successful impersonation attack and substitution attack are also computed.
引用
收藏
页码:105 / 114
页数:10
相关论文
共 8 条
[1]  
Beth T, 1986, DESIGN THEORY
[2]   Authentication codes and bipartite graphs [J].
Feng, Rongquan ;
Hu, Lei ;
Kwak, Jin Ho .
EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (06) :1473-1482
[3]  
Gao S., 1996, J CHINESE U, V11, P343
[4]  
Simmons G., 1985, LNCS, P411, DOI [10.1007/3-540-39568-7_32, DOI 10.1007/3-540-39568-7_32]
[5]  
Wan Z., 1992, DESIGN CODE CRYPTOGR, V2, P333
[6]  
Wan Z, 2002, GEOMETRY CLASSICAL G
[7]   Linear authentication codes: Bounds and constructions [J].
Wang, HX ;
Xing, CP ;
Safavi-Naini, R .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (04) :866-872
[8]  
You H., 1994, SYST SCI MATH SCI, V4, P317