On m-S-complemented subgroups of finite groups

被引:0
作者
Al-Sharo, Khaled A. [1 ]
Sharo, Abdulla A. [2 ]
机构
[1] Al Al Bayt Univ, Dept Math, Mafraq 25113, Jordan
[2] Jordan Univ Sci & Technol, Dept Civil Engn, POB 3030, Irbid 22110, Jordan
来源
RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA | 2018年 / 9卷 / 02期
关键词
Finite group; modular subgroup; S-quasinormal subgroup; generalized S-quasinormal subgroup; m-S-complemented subgroup;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group and H a subgroup of G. We say that H: is generalized S-quasinormal in G if H = < A, B > for some modular subgroup A and S-quasinormal subgroup B of G; m-S-complemented in G if there are a generalized S-quasinormal subgroup S and a subgroup T of G such that G = HT and H boolean AND T <= S <= H. In this paper, we study finite groups with given systems of m-S-complemented subgroups. In particular, we prove the following result: Let F be a saturated formation containing all supersoluble groups, and let E be a normal subgroup of a finite group G such that G/E is an element of F. If for any Sylow subgroup P of E every maximal subgroup of P not having a supersoluble supplement in G is m-S-complemented in G, then G is an element of F.
引用
收藏
页码:351 / 363
页数:13
相关论文
共 35 条
[1]  
AHMAD A., 2004, ALGEBRA DISCRETE MAT, V2, P9
[2]   INFLUENCE OF PI-QUASINORMALITY ON MAXIMAL-SUBGROUPS OF SYLOW SUBGROUPS OF FITTING SUBGROUP OF A FINITE-GROUP [J].
ASAAD, M ;
RAMADAN, M ;
SHAALAN, A .
ARCHIV DER MATHEMATIK, 1991, 56 (06) :521-527
[3]   Finite groups with certain subgroups of Sylow subgroups complemented [J].
Asaad, M. .
JOURNAL OF ALGEBRA, 2010, 323 (07) :1958-1965
[4]   On maximal subgroups of Sylow subgroups of finite groups [J].
Asaad, M .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (11) :3647-3652
[5]  
Ballester-Bolinches, 2006, MATH ITS APPL, V584
[6]   On complemented subgroups of finite groups [J].
Ballester-Bolinches, A ;
Guo, XY .
ARCHIV DER MATHEMATIK, 1999, 72 (03) :161-166
[7]   C-supplemented subgroups of finite groups [J].
Ballester-Bolinches, A ;
Wang, YM ;
Guo, XY .
GLASGOW MATHEMATICAL JOURNAL, 2000, 42 :383-389
[8]  
Ballester-Bolinches A., 2010, PRODUCTS FINITE GROU
[9]  
Doerk K., 1992, FINITE SOLUBLE GROUP
[10]  
Guo W., 2015, STRUCTURE THEORY CAN