Attractors stuck on to invariant subspaces

被引:19
作者
Ashwin, P
机构
[1] Institut Non-Linéare de Nice, 06560 Valbonne
关键词
D O I
10.1016/0375-9601(95)00857-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This note considers some attractors for maps with invariant subspaces. An example is presented with a family of attractors (displaying on-off intermittency) that intersect their reflections along a reflection plane. This is a robust example of (a) an attractor that is ''stuck on'' to its basin boundary and (b) two attractors in a symmetric system that collide at a reflection plane without merging. A further example with D-3 symmetry having attractors stuck on to more than one reflection plane is presented.
引用
收藏
页码:338 / 344
页数:7
相关论文
共 22 条
[1]   RIDDLED BASINS [J].
Alexander, J. C. ;
Yorke, James A. ;
You, Zhiping ;
Kan, I. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04) :795-813
[2]   SYMMETRY GROUPS OF ATTRACTORS [J].
ASHWIN, P ;
MELBOURNE, I .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 126 (01) :59-78
[3]   BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS [J].
ASHWIN, P ;
BUESCU, J ;
STEWART, I .
PHYSICS LETTERS A, 1994, 193 (02) :126-139
[4]  
ASHWIN P, 1994, 741994 WARW PREPR
[5]  
ASTON PJ, 1995, IN PRESS INT J BIFUR
[6]   SYMMETRY-INCREASING BIFURCATION OF CHAOTIC ATTRACTORS [J].
CHOSSAT, P ;
GOLUBITSKY, M .
PHYSICA D, 1988, 32 (03) :423-436
[7]   CYCLING CHAOS [J].
DELLNITZ, M ;
FIELD, M ;
GOLUBITSKY, M ;
MA, J ;
HOHMANN, A .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (04) :1243-1247
[8]  
DELLNITZ M, 1994, UHMD187 U HOUST MATH
[9]  
GUCKENHEIMER J, 1991, DSTOOL DYNAMICAL SYS
[10]   EXPERIMENTAL-OBSERVATION OF ON-OFF INTERMITTENCY [J].
HAMMER, PW ;
PLATT, N ;
HAMMEL, SM ;
HEAGY, JF ;
LEE, BD .
PHYSICAL REVIEW LETTERS, 1994, 73 (08) :1095-1098