JOINT EXTENSION OF 2 THEOREMS OF KOTZIG ON 3-POLYTOPES

被引:20
作者
BORODIN, O [1 ]
机构
[1] RUSSIAN ACAD SCI,INST MATH,NOVOSIBIRSK 630090,RUSSIA
关键词
AMS subject classification code (1991): 05C10; 05C15;
D O I
10.1007/BF01202794
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The weight of an edge in a graph is the sum of the degrees of its end-vertices. It is proved that in each 3-polytope there exists either an edge of weight at most 13 for which both incident faces are triangles, or an edge of weight at most 10 which is incident with a triangle, or else an edge of weight at most 8. All the bounds 13, 10, and 8 are sharp and attained independently of each other.
引用
收藏
页码:121 / 125
页数:5
相关论文
共 8 条
[1]  
BORODIN OV, 1989, J REINE ANGEW MATH, V394, P180
[2]  
BORODIN OV, 1988, 33 INT WISS K ILM TH, P159
[3]  
BORODIN OV, 1988, MET DISKR ANAL NOVOS, V47, P21
[4]  
GRUNBAUM B, 1976, TEORIE COMBINATORIE, V1, P452
[5]  
Kotzig A., 1963, MAT CAS, V13, P20
[6]  
KOTZIG A, 1955, MAT CAS SAV, V5, P233
[7]  
MITCHEM J, 1973, DISCRETE MATH, V5, P253
[8]  
Steinitz E., 1922, ENZYKL MATH WISS, V3, P1