Polynomials whose coefficients are k-Fibonacci numbers

被引:0
作者
Mansour, Toufik [1 ]
Shattuck, Mark [1 ]
机构
[1] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
来源
ANNALES MATHEMATICAE ET INFORMATICAE | 2012年 / 40卷
关键词
k-Fibonacci sequence; zeros of polynomials; linear recurrences;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {a(n)}(n >= 0) denote the linear recursive sequence of order k (k >= 2) defined by the initial values a(0) = a(1) = center dot center dot center dot = a(k-2) = 0 and a(k-1) = 1 and the recursion a(n) = a(n-1) + a(n-2) + center dot center dot center dot + a(n-k) if n >= k. The a(n) are often called k-Fibonacci numbers and reduce to the usual Fibonacci numbers when k = 2. Let P-n,P- k(x) = a(k-1)x(n) + a(k)x(n-1) + center dot center dot center dot + a(n+k-2)x + a(n+k-1), which we will refer to as a k-Fibonacci coefficient polynomial. In this paper, we show for all k that the polynomial P-n,P- k(x) has no real zeros if n is even and exactly one real zero if n is odd. This generalizes the known result for the k = 2 and k = 3 cases corresponding to Fibonacci and Tribonacci coefficient polynomials, respectively. It also improves upon a previous upper bound of approximately k for the number of real zeros of P-n,P- k(x). Finally, we show for all k that the sequence of real zeros of the polynomials P-n,P- k(x) when n is odd converges to the opposite of the positive zero of the characteristic polynomial associated with the sequence an. This generalizes a previous result for the case k = 2.
引用
收藏
页码:57 / 76
页数:20
相关论文
共 11 条
[1]  
BENJAMIN A.T., 2003, PROOFS REALLY COUNT
[2]  
Garth D, 2007, J INTEGER SEQ, V10
[3]  
Knuth D. E., 1973, ART COMPUTER PROGRAM
[4]  
Marden M., 1966, MATH SURVEYS, V3
[5]  
Matyas F, 2011, ANN MATH INFORM, V38, P95
[6]  
Matyas F, 2010, ANN MATH INFORM, V37, P101
[7]  
Matyas F, 2008, ANN MATH INFORM, V35, P123
[8]  
Matyas F, 2007, ANN MATH INFORM, V34, P71
[9]   A combinatorial interpretation of the generalized Fibonacci numbers [J].
Munarini, E .
ADVANCES IN APPLIED MATHEMATICS, 1997, 19 (03) :306-318
[10]  
Munarini E, 2005, FIBONACCI QUART, V43, P234