THE [18, 9, 6] CODE IS UNIQUE

被引:26
作者
SIMONIS, J
机构
[1] Delft University of Technology, Faculty of Technical Mathematics and Informatics, 2600 GA Delft
关键词
D O I
10.1016/0012-365X(92)90574-Y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper contains a proof that all binary linear [18, 9, 6] codes are equivalent to the extended quadratic residue code of length 18. In addition, a complete description of the words and cosets of this code is given in terms of the special projective structure of the projective line over F-17.
引用
收藏
页码:439 / 448
页数:10
相关论文
共 7 条
[1]  
[Anonymous], GRAPHS CODES DESIGNS
[2]  
DODUNEKOV SM, 1983, DISCRETE APPL MATH, V12, P103
[3]   THE NONEXISTENCE OF CERTAIN BINARY LINEAR CODES [J].
HILL, R ;
TRAYNOR, KL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (04) :917-922
[4]  
Hirschfeld JWP, 1998, PROJECTIVE GEOMETRIE, V2nd
[5]  
Mac Williams F. J., 1983, THEORY ERROR CORRECT
[6]  
SIMONIS J, 1991, LECTURE NOTES COMPUT, V508
[7]   AN UPDATED TABLE OF MINIMUM-DISTANCE BOUNDS FOR BINARY LINEAR CODES [J].
VERHOEFF, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1987, 33 (05) :665-680