THE STRONG ZERO THEOREM FOR AN ELLIPTIC BOUNDARY-VALUE PROBLEM IN AN ANGLE

被引:1
作者
KOZLOV, VA
机构
[1] Leningrad Branch, Blagonravov Institute of Engineering Science, Academy of Sciences of the USSR
来源
MATHEMATICS OF THE USSR-SBORNIK | 1990年 / 67卷 / 01期
关键词
D O I
10.1070/SM1990v067n01ABEH001365
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sufficient algebraic conditions are given under which the solution of a homogeneous elliptic boundary value problem with constant coefficients in an angle, which has a zero of infinite order at the vertex, vanishes identically. If the angle equals σ or 2σ, the sufficient conditions are satisfied by all elliptic boundary value problems. The same is true in the case of an arbitrary angle if the principal part of the elliptic operator is a power of a second order operator. © 1990 American Mathematical Society.
引用
收藏
页码:283 / 302
页数:20
相关论文
共 17 条
[1]  
Agranovich M. S., 1964, RUSSIAN MATH SURVEYS, V19, P53
[2]   2ND ANALYTICAL MEMBER FOR A PROBLEM WITH 2M-ORDER ELLIPTIC LIMITS ON A POLYGON [J].
DAUGE, M .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1984, 9 (02) :169-195
[3]  
ESKIN G, 1985, P SYMP PURE MATH, V43, P105
[4]  
Hormander L, 1985, ANAL LINEAR PARTIAL
[5]  
KOMEC AI, 1973, MAT SBORNIK, V92, P89
[6]  
Kondrat'ev V.A., 1970, DIFF URAVN, V6, P1831
[7]  
Kondrat'ev VA, 1967, T MOSK MATEM OVA, V16, P209
[8]  
KOZLOV VA, 1988, 1988 P SEM S L SOB 2, P82
[9]  
Landis E.M., 1963, USPEHI MAT NAUK, V18, P3
[10]  
MAZYA VG, 1975, SER MAT MEKH ASTR, V1, P102