CERTAIN AVERAGES ON THE A-ADIC NUMBERS

被引:4
作者
ASMAR, NH [1 ]
NAIR, R [1 ]
机构
[1] UNIV LIVERPOOL,DEPT PURE MATH,LIVERPOOL L69 3BX,ENGLAND
关键词
D O I
10.2307/2159778
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For L(p) intersection L2 functions f, with p greater than one, defined on the a-adic numbers OMEGA(a), we consider averages like [GRAPHICS] where x and alpha are in OMEGA(a). Here p(n) denotes the nth prime. These averages are known to converge for almost all x. We describe explicitly these limits, which possibly contrary to expectation, turn out in general not to be the integral of f.
引用
收藏
页码:21 / 28
页数:8
相关论文
共 8 条
[1]  
BOURGAIN J, 1988, ISRAEL J MATH, V61, P38
[2]  
Bourgain J., 1989, I HAUTES ETUDES SCI, V69, P5
[3]  
Davenport H., 1980, GRADUATE TEXTS MATH, V74
[4]  
HEWITT E, 1979, ABSTRACT HARMONIC AN, V1
[5]  
HEWITT E, 1970, ABSTRACT HARMONIC AN, V2
[6]  
NAIR R, IN PRESS ERGODIC THE
[7]  
NAIR R, SOME ARITHMETIC PROP
[8]   POINTWISE ERGODIC THEOREM ALONG THE PRIME-NUMBERS [J].
WIERDL, M .
ISRAEL JOURNAL OF MATHEMATICS, 1988, 64 (03) :315-336