SUPERLINEARLY CONVERGENT ALGORITHM FOR MIN-MAX PROBLEMS

被引:51
作者
POLAK, E
MAYNE, DQ
HIGGINS, JE
机构
[1] UNIV CALIF BERKELEY,COMP SCI & ELECTR RES LAB,BERKELEY,CA 94720
[2] UNIV LONDON IMPERIAL COLL SCI & TECHNOL,DEPT ELECT ENGN,LONDON SW7 2AZ,ENGLAND
关键词
MINIMAX PROBLEM; NONDIFFERENTIABLE OPTIMIZATION; SUPERLINEAR CONVERGENCE;
D O I
10.1007/BF00940683
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Algorithms for solving the problem of minimizing the maximum of a finite number of functions are proposed and analyzed. Quadratic approximations to the functions are employed in the determination of a search direction. Global convergence is proven and it is shown that a quadratic rate of convergence is obtained.
引用
收藏
页码:407 / 439
页数:33
相关论文
共 22 条
[1]   EFFICIENT METHOD TO SOLVE MINIMAX PROBLEM DIRECTLY [J].
CHARALAMBOUS, C ;
CONN, AR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (01) :162-187
[2]   THEORY OF MAX-MIN WITH APPLICATIONS [J].
DANSKIN, JM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1966, 14 (04) :641-&
[3]  
Daugavet V. A., 1981, USSR COMP MATH MATH, V21, P19
[4]  
FLETCHER R, 1982, MATH PROGRAM STUD, V17, P67
[5]   COMBINED LP AND QUASI-NEWTON METHODS FOR MINIMAX OPTIMIZATION [J].
HALD, J ;
MADSEN, K .
MATHEMATICAL PROGRAMMING, 1981, 20 (01) :49-62
[7]  
Kantorovich LV, 1982, FUNCTIONAL ANAL
[8]  
Levitin ES., 1966, USSR COMP MATH MATH, V6, P1, DOI [DOI 10.1016/0041-5553(66)90114-5, 10.1016/0041-5553(66)90114-5]
[9]   LINEARLY CONSTRAINED MINIMAX OPTIMIZATION [J].
MADSEN, K ;
SCHJAERJACOBSEN, H .
MATHEMATICAL PROGRAMMING, 1978, 14 (02) :208-223
[10]  
MARATOS N, 1978, THESIS U LONDON LOND