CONTINUUM-LIMIT, GALILEAN INVARIANCE, AND SOLITONS IN THE QUANTUM EQUIVALENT OF THE NOISY BURGERS-EQUATION

被引:40
作者
FOGEDBY, HC [1 ]
ERIKSSON, AB [1 ]
MIKHEEV, LV [1 ]
机构
[1] NORDITA,DK-2100 COPENHAGEN 0,DENMARK
关键词
D O I
10.1103/PhysRevLett.75.1883
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A continuum limit of the non-Hermitian spin-1/2 chain, conjectured recently to belong to the universality class of the noisy Burgers or, equivalently, Kardar-Parisi-Zhang equation, is obtained and analyzed. The Galilean invariance of the Burgers equation is explicitly realized in the operator algebra. In the quasiclassical limit we find nonlinear soliton excitations exhibiting the omega proportional to k(z) dispersion relation with dynamical exponent z = 3/2.
引用
收藏
页码:1883 / 1886
页数:4
相关论文
共 22 条
[1]  
[Anonymous], 1987, PHASE TRANSITIONS CR
[2]  
Burgers JM., 1974, NONLINEAR DIFFUSION, DOI DOI 10.1007/978-94-010-1745-9
[3]  
DHAR D, 1987, PHASE TRANSIT, V9, P51, DOI 10.1080/01411598708241334
[4]   CLASSICAL AND QUANTUM ASPECTS OF THE CONTINUOUS HEISENBERG CHAIN AT T=0 [J].
FOGEDBY, HC .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 41 (02) :115-127
[5]  
FOGEDBY HC, 1980, LECTURE NOTES PHYSIC, V131
[6]   LONG-TIME TAILS AND LARGE-EDDY BEHAVIOR OF A RANDOMLY STIRRED FLUID [J].
FORSTER, D ;
NELSON, DR ;
STEPHEN, MJ .
PHYSICAL REVIEW LETTERS, 1976, 36 (15) :867-870
[7]   LARGE-DISTANCE AND LONG-TIME PROPERTIES OF A RANDOMLY STIRRED FLUID [J].
FORSTER, D ;
NELSON, DR ;
STEPHEN, MJ .
PHYSICAL REVIEW A, 1977, 16 (02) :732-749
[8]   2-LOOP RENORMALIZATION-GROUP ANALYSIS OF THE BURGERS-KARDAR-PARISI-ZHANG EQUATION [J].
FREY, E ;
TAUBER, UC .
PHYSICAL REVIEW E, 1994, 50 (02) :1024-1045
[9]   ANHARMONIC ELASTICITY OF SMECTICS-A AND THE KARDAR-PARISI-ZHANG MODEL [J].
GOLUBOVIC, L ;
WANG, ZG .
PHYSICAL REVIEW LETTERS, 1992, 69 (17) :2535-2538
[10]   KARDAR-PARISI-ZHANG MODEL AND ANOMALOUS ELASTICITY OF 2-DIMENSIONAL AND 3-DIMENSIONAL SMECTIC-A LIQUID-CRYSTALS [J].
GOLUBOVIC, L ;
WANG, ZG .
PHYSICAL REVIEW E, 1994, 49 (04) :2567-2578