A NEW NUMERICAL-METHOD FOR THE INTEGRATION OF HIGHLY OSCILLATORY 2ND-ORDER ORDINARY DIFFERENTIAL-EQUATIONS

被引:25
作者
DENK, G
机构
[1] Technische Universität München, Mathematisches Institut
关键词
ORDINARY DIFFERENTIAL EQUATIONS; OSCILLATORY SOLUTIONS; MULTISTEP METHOD; CONSISTENCY; CONVERGENCE; ABSOLUTE STABILITY;
D O I
10.1016/0168-9274(93)90131-A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a new discretization scheme for the efficient integration of highly oscillatory second-order ordinary differential equations. The discretization scheme is based on the principle of coherence proposed by Hersch. The analysis of the formulas reveals properties such as absolute stability and P-stability which indicate the ability of the method to handle highly oscillatory_differential equations. This is confirmed by numerical results.
引用
收藏
页码:57 / 67
页数:11
相关论文
共 17 条
[11]  
LAMBERT JD, 1979, COMPUTATIONAL METHOD
[12]   NUMEROV-TYPE METHODS WITH MINIMAL PHASE-LAG FOR THE NUMERICAL-INTEGRATION OF THE ONE-DIMENSIONAL SCHRODINGER-EQUATION [J].
SIMOS, TE ;
RAPTIS, AD .
COMPUTING, 1990, 45 (02) :175-181
[13]   STABILIZATION OF COWELLS METHOD [J].
STIEFEL, E ;
BETTIS, DG .
NUMERISCHE MATHEMATIK, 1969, 13 (02) :154-&
[14]  
Stoer J., 1993, INTRO NUMERICAL ANAL
[15]  
VANDENBERGHE G, 1990, INT J COMPUT MATH, V32, P233
[16]   DIAGONALLY IMPLICIT RUNGE-KUTTA-NYSTROM METHODS FOR OSCILLATORY PROBLEMS [J].
VANDERHOUWEN, PJ ;
SOMMEIJER, BP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (02) :414-429
[17]   EXPLICIT RUNGE-KUTTA (-NYSTROM) METHODS WITH REDUCED PHASE ERRORS FOR COMPUTING OSCILLATING SOLUTIONS [J].
VANDERHOUWEN, PJ ;
SOMMEIJER, BP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (03) :595-617