A NEW NUMERICAL-METHOD FOR THE INTEGRATION OF HIGHLY OSCILLATORY 2ND-ORDER ORDINARY DIFFERENTIAL-EQUATIONS

被引:25
作者
DENK, G
机构
[1] Technische Universität München, Mathematisches Institut
关键词
ORDINARY DIFFERENTIAL EQUATIONS; OSCILLATORY SOLUTIONS; MULTISTEP METHOD; CONSISTENCY; CONVERGENCE; ABSOLUTE STABILITY;
D O I
10.1016/0168-9274(93)90131-A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a new discretization scheme for the efficient integration of highly oscillatory second-order ordinary differential equations. The discretization scheme is based on the principle of coherence proposed by Hersch. The analysis of the formulas reveals properties such as absolute stability and P-stability which indicate the ability of the method to handle highly oscillatory_differential equations. This is confirmed by numerical results.
引用
收藏
页码:57 / 67
页数:11
相关论文
共 17 条
[1]  
CHAR BW, 1990, MAPLE, V5
[2]   A NOUMEROV-TYPE METHOD WITH MINIMAL PHASE-LAG FOR THE INTEGRATION OF 2ND-ORDER PERIODIC INITIAL-VALUE PROBLEMS .2. EXPLICIT METHOD [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 15 (03) :329-337
[3]   A NOUMEROV-TYPE METHOD WITH MINIMAL PHASE-LAG FOR THE INTEGRATION OF 2ND ORDER PERIODIC INITIAL-VALUE PROBLEMS [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 11 (03) :277-281
[4]  
DENK G, 1992, THESIS TU MUNCHEN GE
[5]   STUDY OF EXTRAPOLATION METHODS BASED ON MULTISTEP SCHEMES WITHOUT PARASITIC SOLUTIONS [J].
DEUFLHARD, P .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1979, 30 (02) :177-189
[6]  
Hairer E., 1991, SOLVING ORDINARY DIF, DOI [10.1007/978-3-662-09947-6, DOI 10.1007/978-3-662-09947-6]
[7]  
HAIRER E, 1987, SOLVING ORDINARY DIF, V1
[8]  
HERSCH J, 1958, Z ANGEW MATH PHYS, V9, P129
[9]  
HERSCH J, 1974, INT SERIES NUMERICAL, V19, P121
[10]  
HINDMARSCH AC, 1982, UCRL88007 LAWR LIV N