COMPARING NONPARAMETRIC VERSUS PARAMETRIC REGRESSION FITS

被引:779
作者
HARDLE, W [1 ]
MAMMEN, E [1 ]
机构
[1] HUMBOLDT UNIV BERLIN,INST STOCHAST,FB MATH,D-10099 BERLIN,GERMANY
关键词
KERNEL ESTIMATE; BOOTSTRAP; WILD BOOTSTRAP; GOODNESS-OF-FIT TEST;
D O I
10.1214/aos/1176349403
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In general, there will be visible differences between a parametric and a nonparametric curve estimate. It is therefore quite natural to compare these in order to decide whether the parametric model could be justified. An asymptotic quantification is the distribution of the integrated squared difference between these curves. We show that the standard way of boot-strapping this statistic fails. We use and analyse a different form of bootstrapping for this task. We call this method the wild bootstrap and apply it to fitting Engel curves in expenditure data analysis.
引用
收藏
页码:1926 / 1947
页数:22
相关论文
共 39 条
[1]  
AZZALINI A, 1989, BIOMETRIKA, V76, P1
[2]  
BERAN R, 1986, ANN STAT, V14, P1295, DOI 10.1214/aos/1176350143
[3]  
CAOABAD R, 1990, UNPUB BOOTSTRAPPING
[4]   ADAPTING FOR HETEROSCEDASTICITY IN LINEAR-MODELS [J].
CARROLL, RJ .
ANNALS OF STATISTICS, 1982, 10 (04) :1224-1233
[5]   LOCALLY WEIGHTED REGRESSION - AN APPROACH TO REGRESSION-ANALYSIS BY LOCAL FITTING [J].
CLEVELAND, WS ;
DEVLIN, SJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (403) :596-610
[6]   STRONG UNIFORM-CONVERGENCE RATES IN ROBUST NONPARAMETRIC TIME-SERIES ANALYSIS AND PREDICTION - KERNEL REGRESSION ESTIMATION FROM DEPENDENT OBSERVATIONS [J].
COLLOMB, G ;
HARDLE, W .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1986, 23 (01) :77-89
[7]   NONPARAMETRIC-ESTIMATION OF REGRESSION - BIBLIOGRAPHICAL SURVEY [J].
COLLOMB, G .
INTERNATIONAL STATISTICAL REVIEW, 1981, 49 (01) :75-93
[8]   A SMOOTHING SPLINE BASED TEST OF MODEL ADEQUACY IN POLYNOMIAL REGRESSION [J].
COX, D ;
KOH, E .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1989, 41 (02) :383-400
[9]   TESTING THE (PARAMETRIC) NULL MODEL HYPOTHESIS IN (SEMIPARAMETRIC) PARTIAL AND GENERALIZED SPLINE MODELS [J].
COX, D ;
KOH, E ;
WAHBA, G ;
YANDELL, BS .
ANNALS OF STATISTICS, 1988, 16 (01) :113-119
[10]   A CENTRAL-LIMIT-THEOREM FOR GENERALIZED QUADRATIC-FORMS [J].
DEJONG, P .
PROBABILITY THEORY AND RELATED FIELDS, 1987, 75 (02) :261-277