On the strong logarithmic summability of the double trigonometric Fourier series

被引:0
作者
Getsadze, Rostom [1 ]
机构
[1] Blekingevagen 5, S-75758 Uppsala, Sweden
来源
ACTA SCIENTIARUM MATHEMATICARUM | 2011年 / 77卷 / 3-4期
关键词
double Fourier series; strong logarithmic means; bounded in measure;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the following theorem: Suppose that E subset of [0, 2 pi)(2) is any Lebesgue measurable set, mu E-2 > 0, and phi(u) is a nonnegative, continuous and nondecreasing function on [0,8) such that u phi(u) is a convex function on [0,8) and f(u) = o(ln u), u -> infinity. Then there exists a function g is an element of L-1([0, 2 pi)(2)) such that integral([0,2 pi)2) |g(x, y)|phi(|g(x, y)|)dxdy < infinity and the sequence of the strong logarithmic means by squares of the double trigonometric Fourier series of g, that is, the sequence {1/ln N Sigma(N)(k=1) |S-k,S-k(g;x,y)-g(x,y)|/k, N = 2.3...} is not bounded in measure on E.
引用
收藏
页码:473 / 488
页数:16
相关论文
共 8 条
[1]   SOME PROBLEMS IN THE THEORY OF MULTIPLE TRIGONOMETRIC SERIES [J].
DYACHENKO, MI .
RUSSIAN MATHEMATICAL SURVEYS, 1992, 47 (05) :103-171
[2]  
Getsadze R, 2005, ACTA SCI MATH, V71, P195
[3]   (H,K)-SUMMABILITY OF MULTIPLE TRIGONOMETRIC FOURIER-SERIES [J].
GOGOLADZE, LD .
MATHEMATICS OF THE USSR-IZVESTIYA, 1977, 11 (04) :889-908
[4]  
KONYAGIN S. V., 1990, I N VEKUA I APPL MAT, V5, P71
[5]  
KONYAGIN S. V., 1989, P STEKLOV I MATH, V1, p[102, 107]
[6]  
NIKISHIN E. M., 1970, RUSS MATH SURV, V25, p[129, 125]
[7]  
ZHIZHIASHVILI LV, 1983, NEKOTORYE VOPROSY MN
[8]  
[No title captured]