CHAOS AND ELLIPTIC-CURVES

被引:0
作者
BALKIN, SD [1 ]
GOLEBIEWSKI, EL [1 ]
REITER, CA [1 ]
机构
[1] LAFAYETTE COLL,DEPT MATH,EASTON,PA 18042
关键词
D O I
10.1016/0097-8493(94)90122-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The escape time behavior of a function associated with elliptic curves is studied via Julia sets and composite Mandelbrot sets. The Mandelbrot sets are composite in the sense that two critical points are followed.
引用
收藏
页码:113 / 117
页数:5
相关论文
共 10 条
[1]  
Barnsley MF., 2014, FRACTALS EVERYWHERE
[2]  
DEVANEY RL, 1990, CHAOS FRACTALS DYNAM
[3]   FRACTALS FROM Z]-Z-ALPHA+C IN THE COMPLEX C-PLANE [J].
GUJAR, UG ;
BHAVSAR, VC .
COMPUTERS & GRAPHICS, 1991, 15 (03) :441-449
[4]   SELF-SIMILAR SEQUENCES AND CHAOS FROM GAUSS SUMS [J].
LAKHTAKIA, A ;
MESSIER, R .
COMPUTERS & GRAPHICS, 1989, 13 (01) :59-62
[5]  
Mandelbrot B.B., 1983, AMJPHYS
[6]  
Peitgen Heinz-Otto, 1986, BEAUTY FRACTALS IMAG
[7]   COMPUTER-GRAPHICS GENERATED FROM THE ITERATION OF ALGEBRAIC TRANSFORMATIONS IN THE COMPLEX-PLANE [J].
PICKOVER, CA ;
KHORASANI, E .
COMPUTERS & GRAPHICS, 1985, 9 (02) :147-151
[8]  
PICKOVER CA, 1990, COMPUTERS PATTERN CH
[9]  
SILVERMAN J, 1986, ARITHMETIC ELLIPTIC
[10]  
WEGNER T, 1991, FRACTAL CREATIONS