Multiple local optima for seemingly unrelated regression models

被引:0
作者
Womer, Norman K. [1 ]
机构
[1] Univ Missouri, Coll Business Adm, One Univ Blvd, St Louis, MO 63121 USA
关键词
point estimation; maximum likelihood; structural equation model; cross equation restrictions; specification test; multiple local optima; seemingly unrelated regression models;
D O I
10.1504/IJCEE.2016.073343
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper provides an example of multiple local maxima to the likelihood function for a seemingly unrelated regression (SUR) model with a cross equation restriction. Since this is the least complex of the various structural equations models (SEM) and since maximum likelihood is often the preferred technique for SEM the problem of multiple local maxima is expected to be pervasive.
引用
收藏
页码:44 / 55
页数:12
相关论文
共 50 条
[21]   Marginal regression models with a time to event outcome and discrete multiple source predictors [J].
Heather J. Litman ;
Nicholas J. Horton ;
Jane M. Murphy ;
Nan M. Laird .
Lifetime Data Analysis, 2006, 12 :249-265
[22]   On the rate of convergence of the ECME algorithm for multiple regression models with t-distributed errors [J].
Kowalski, J ;
Tu, XM ;
Day, RS ;
MendozaBlanco, JR .
BIOMETRIKA, 1997, 84 (02) :269-281
[23]   Analyses of growth curves of Nellore cattle by multiple-trait and random regression models [J].
Nobre, PRC ;
Misztal, I ;
Tsuruta, S ;
Bertrand, JK ;
Silva, LOC ;
Lopes, PS .
JOURNAL OF ANIMAL SCIENCE, 2003, 81 (04) :918-926
[24]   Assessment of the number of components in Gaussian mixture models in the presence of multiple local maximizers [J].
Kim, Daeyoung ;
Seo, Byungtae .
JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 125 :100-120
[25]   Accounting for Misclassified Outcomes in Binary Regression Models Using Multiple Imputation With Internal Validation Data [J].
Edwards, Jessie K. ;
Cole, Stephen R. ;
Troester, Melissa A. ;
Richardson, David B. .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2013, 177 (09) :904-912
[26]   Causal Segment Regression with Multiple ThresholdsCausal Segment Regression with Multiple ThresholdsJ. Wang [J].
Jingli Wang .
Statistics and Computing, 2025, 35 (5)
[27]   Local Influence in Regression Models with Measurement Errors and Censored Data Considering the Student-t Distribution [J].
Montoya, Alejandro Monzon .
SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2024, 86 (01) :91-108
[28]   Switching nonparametric regression models [J].
de Souza, Camila P. E. ;
Heckman, Nancy E. .
JOURNAL OF NONPARAMETRIC STATISTICS, 2014, 26 (04) :617-637
[29]   Robust fitting of mixture regression models [J].
Bai, Xiuqin ;
Yao, Weixin ;
Boyer, John E. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (07) :2347-2359
[30]   REGRESSION-MODELS FOR AN ANGULAR RESPONSE [J].
FISHER, NI ;
LEE, AJ .
BIOMETRICS, 1992, 48 (03) :665-677