Multiple local optima for seemingly unrelated regression models

被引:0
作者
Womer, Norman K. [1 ]
机构
[1] Univ Missouri, Coll Business Adm, One Univ Blvd, St Louis, MO 63121 USA
关键词
point estimation; maximum likelihood; structural equation model; cross equation restrictions; specification test; multiple local optima; seemingly unrelated regression models;
D O I
10.1504/IJCEE.2016.073343
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper provides an example of multiple local maxima to the likelihood function for a seemingly unrelated regression (SUR) model with a cross equation restriction. Since this is the least complex of the various structural equations models (SEM) and since maximum likelihood is often the preferred technique for SEM the problem of multiple local maxima is expected to be pervasive.
引用
收藏
页码:44 / 55
页数:12
相关论文
共 50 条
  • [21] Marginal regression models with a time to event outcome and discrete multiple source predictors
    Heather J. Litman
    Nicholas J. Horton
    Jane M. Murphy
    Nan M. Laird
    Lifetime Data Analysis, 2006, 12 : 249 - 265
  • [22] On the rate of convergence of the ECME algorithm for multiple regression models with t-distributed errors
    Kowalski, J
    Tu, XM
    Day, RS
    MendozaBlanco, JR
    BIOMETRIKA, 1997, 84 (02) : 269 - 281
  • [23] Analyses of growth curves of Nellore cattle by multiple-trait and random regression models
    Nobre, PRC
    Misztal, I
    Tsuruta, S
    Bertrand, JK
    Silva, LOC
    Lopes, PS
    JOURNAL OF ANIMAL SCIENCE, 2003, 81 (04) : 918 - 926
  • [24] Assessment of the number of components in Gaussian mixture models in the presence of multiple local maximizers
    Kim, Daeyoung
    Seo, Byungtae
    JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 125 : 100 - 120
  • [25] Accounting for Misclassified Outcomes in Binary Regression Models Using Multiple Imputation With Internal Validation Data
    Edwards, Jessie K.
    Cole, Stephen R.
    Troester, Melissa A.
    Richardson, David B.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2013, 177 (09) : 904 - 912
  • [26] Local Influence in Regression Models with Measurement Errors and Censored Data Considering the Student-t Distribution
    Montoya, Alejandro Monzon
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2024, 86 (01): : 91 - 108
  • [27] Switching nonparametric regression models
    de Souza, Camila P. E.
    Heckman, Nancy E.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2014, 26 (04) : 617 - 637
  • [28] Robust fitting of mixture regression models
    Bai, Xiuqin
    Yao, Weixin
    Boyer, John E.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (07) : 2347 - 2359
  • [29] REGRESSION-MODELS FOR AN ANGULAR RESPONSE
    FISHER, NI
    LEE, AJ
    BIOMETRICS, 1992, 48 (03) : 665 - 677
  • [30] Profiling heteroscedasticity in linear regression models
    Zhou, Qian M.
    Song, Peter X. -K.
    Thompson, Mary E.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2015, 43 (03): : 358 - 377