MARTINGALE CONVERGENCE IN BRANCHING RANDOM-WALK

被引:194
作者
BIGGINS, JD [1 ]
机构
[1] UNIV OXFORD,OXFORD,ENGLAND
关键词
D O I
10.2307/3213258
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:25 / 37
页数:13
相关论文
共 15 条
[1]  
Athreya K, 1972, BRANCHING PROCESSES, DOI DOI 10.1007/978-3-642-65371-1
[2]   CONVERGENCE OF AGE DISTRIBUTION IN ONE-DIMENSIONAL SUPERCRITICAL AGE-DEPENDENT BRANCHING PROCESS [J].
ATHREYA, KB ;
KAPLAN, N .
ANNALS OF PROBABILITY, 1976, 4 (01) :38-50
[3]   1ST-BIRTH AND LAST-BIRTH PROBLEMS FOR A MULTITYPE AGE-DEPENDENT BRANCHING-PROCESS [J].
BIGGINS, JD .
ADVANCES IN APPLIED PROBABILITY, 1976, 8 (03) :446-459
[4]   ASYMPTOTIC PROPERTIES OF SUPERCRITICAL BRANCHING PROCESSES .2. CRUMP-MODE AND JIRINA PROCESSES [J].
BINGHAM, NH ;
DONEY, RA .
ADVANCES IN APPLIED PROBABILITY, 1975, 7 (01) :66-82
[5]   A GENERAL AGE-DEPENDENT BRANCHING PROCESS .1. [J].
CRUMP, KS ;
MODE, CJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1968, 24 (03) :494-&
[6]   LIMIT THEOREM FOR A CLASS OF SUPERCRITICAL BRANCHING PROCESSES [J].
DONEY, RA .
JOURNAL OF APPLIED PROBABILITY, 1972, 9 (04) :707-724
[7]   FUNCTIONAL-EQUATION FOR GENERAL BRANCHING PROCESSES [J].
DONEY, RA .
JOURNAL OF APPLIED PROBABILITY, 1973, 10 (01) :198-205
[8]   SINGLE-TYPE AND MULTI-TYPE GENERAL AGE-DEPENDENT BRANCHING-PROCESSES [J].
DONEY, RA .
JOURNAL OF APPLIED PROBABILITY, 1976, 13 (02) :239-246
[9]   ON A THEOREM OF HSU AND ROBBINS [J].
ERDOS, P .
ANNALS OF MATHEMATICAL STATISTICS, 1949, 20 (02) :286-291
[10]  
Feller W., 2008, INTRO PROBABILITY TH