Synchronization of Networks of Piecewise-Smooth Systems

被引:15
作者
Coraggio, Marco [1 ]
DeLellis, Pietro [1 ]
Hogan, S. John [2 ]
di Bernardo, Mario [1 ,2 ]
机构
[1] Univ Naples Federico II, Dept Informat Technol & Elect Engn, I-80125 Naples, Italy
[2] Univ Bristol, Dept Engn Math, Bristol BS8 1UB, Avon, England
来源
IEEE CONTROL SYSTEMS LETTERS | 2018年 / 2卷 / 04期
关键词
Switched systems; network analysis and control;
D O I
10.1109/LCSYS.2018.2845302
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study convergence in networks of piecewise-smooth (PWS) systems that commonly arise in applications to model dynamical systems whose evolution is affected by macroscopic events such as switches and impacts. Existing approaches were typically oriented toward guaranteeing global bounded synchronizability, local stability of the synchronization manifold, or achieving synchronization by exerting a control action on each node. Here we start by generalizing existing results on QUAD systems to the case of PWS systems, accounting for a large variety of nonlinear coupling laws. Then, we propose that a discontinuous coupling can be used to guarantee global synchronizability of a network of N PWS agents under mild assumptions on the individual dynamics. We provide extensive numerical simulations to gain insights on larger networks.
引用
收藏
页码:653 / 658
页数:6
相关论文
共 28 条
  • [1] [Anonymous], 1959, PUNL MATH DEBRECEN, DOI [DOI 10.2307/1999405, DOI 10.5486/PMD.1959.6.3-4.12, DOI 10.1109/ICSMC.2006.384625]
  • [2] Synchronization in complex networks
    Arenas, Alex
    Diaz-Guilera, Albert
    Kurths, Jurgen
    Moreno, Yamir
    Zhou, Changsong
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03): : 93 - 153
  • [3] On the dynamics and optimization of a non-smooth bistable oscillator - Application to energy harvesting
    Cohen, Nadav
    Bucher, Izhak
    [J]. JOURNAL OF SOUND AND VIBRATION, 2014, 333 (19) : 4653 - 4667
  • [4] Synchrony in networks of coupled non-smooth dynamical systems: Extending the master stability function
    Coombes, Stephen
    Thul, Ruediger
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2016, 27 (06) : 904 - 922
  • [5] Cortes J, 2008, IEEE CONTR SYST MAG, V28, P36, DOI 10.1109/MCS.2008.919306
  • [6] Synchronization of switch dynamical systems
    Danca, MF
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (08): : 1813 - 1826
  • [7] The partial pinning control strategy for large complex networks
    DeLellis, Pietro
    Garofalo, Franco
    Lo Iudice, Francesco
    [J]. AUTOMATICA, 2018, 89 : 111 - 116
  • [8] Convergence and synchronization in heterogeneous networks of smooth and piecewise smooth systems
    DeLellis, Pietro
    di Bernardo, Mario
    Liuzza, Davide
    [J]. AUTOMATICA, 2015, 56 : 1 - 11
  • [9] On QUAD, Lipschitz, and Contracting Vector Fields for Consensus and Synchronization of Networks
    DeLellis, Pietro
    di Bernardo, Mario
    Russo, Giovanni
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2011, 58 (03) : 576 - 583
  • [10] DiBernardo M, 2008, APPL MATH SCI, V163, P1, DOI 10.1007/978-1-84628-708-4