Lag synchronisation of chaotic systems using sliding mode control

被引:3
作者
Meng, Hua [1 ]
Wang, Yueying [1 ]
Zhang, Jianhua [1 ]
Li, Yang [2 ]
机构
[1] Hebei Univ Sci & Technol, Dept Elect Engn, Yuxiang St, Shijiazhuang 050018, Hebei, Peoples R China
[2] Yanshan Univ, Dept Elect Engn, Qnhuangdao 066004, Peoples R China
关键词
chaotic systems; lag synchronisation; sliding mode control;
D O I
10.1504/IJMIC.2014.065340
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, lag synchronisation of chaotic systems with disturbances is investigated based on sliding mode control. The disturbance observer is developed to ensure the boundedness of the disturbance error dynamics by using the linear matrix inequality approach. Then by sliding mode control, a control scheme is designed to realise the lag synchronisation between a drive system and a response system with disturbances, and the sufficient condition of lag synchronisation is established. The Lyapunov stability theorem is used to verify that the error system can achieve an asymptotically stable condition. A specific chaotic system is taken as an example for numerical simulation demonstration to verify the effectiveness and feasibility of the proposed approach.
引用
收藏
页码:218 / 224
页数:7
相关论文
共 18 条
[1]   Synchronization of different fractional order chaotic systems using active control [J].
Bhalekar, Sachin ;
Daftardar-Gejji, Varsha .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (11) :3536-3546
[2]   Projective lag synchronization of spatiotemporal chaos via active sliding mode control [J].
Chai, Yuan ;
Chen, Li-Qun .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (08) :3390-3398
[3]   Projective and lag synchronization of a novel hyperchaotic system via impulsive control [J].
Chen, Juan ;
Liu, Hui ;
Lu, Jun-an ;
Zhang, Qunjiao .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (04) :2033-2040
[4]   Chaotic synchronisation and secure communication via sliding-mode and impulsive observers [J].
Hamiche, Hamid ;
Guermah, Said ;
Djennoune, Said ;
Kemih, Karim ;
Ghanes, Malek ;
Barbot, Jean-Pierre .
INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2013, 20 (04) :305-318
[5]  
Hassan S., 2007, COMMUN NONLINEAR SCI, V14, P508
[6]  
Kalyana C., 2010, APPL MATH LETT, V24, P329
[7]   Sliding mode control with self-tuning law for uncertain nonlinear systems [J].
Kuo, Tzu-Chun ;
Huang, Ying-Jeh ;
Chang, Shin-Hung .
ISA TRANSACTIONS, 2008, 47 (02) :171-178
[8]  
Michael B., 2009, J FRANKLIN I, V347, P910
[9]   Generalized control and synchronization of chaos in RCL-shunted Josephson junction using backstepping design [J].
Njah, A. N. ;
Ojo, K. S. ;
Adebayo, G. A. ;
Obawole, A. O. .
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2010, 470 (13-14) :558-564
[10]   SYNCHRONIZATION IN CHAOTIC SYSTEMS [J].
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW LETTERS, 1990, 64 (08) :821-824