TUNABLE GENERATION OF NANOMETER-SCALE CORRUGATIONS ON HIGH-INDEX III-V SEMICONDUCTOR SURFACES

被引:7
|
作者
TOURNIE, E
NOTZEL, R
PLOOG, KH
机构
[1] MAX PLANCK INST FESTKORPERFORSCH,D-70569 STUTTGART,GERMANY
[2] PAUL DRUDE INST FESTKORPERELEKTRONIK,D-10117 BERLIN,GERMANY
来源
PHYSICAL REVIEW B | 1994年 / 49卷 / 16期
关键词
D O I
10.1103/PhysRevB.49.11053
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have investigated by means of in situ reflection high-energy electron diffraction the surface topography of various III(A)III(B)-V and III-V(A)V(B) layers grown by solid-source molecular-beam epitaxy on (311) InP and GaAs substrates. In a wide temperature range, III(A)III(B)-V (311) surfaces are corrugated on a nanometer scale in a way similar to that previously reported for (311) GaAs surfaces [R. Notzel et al., Phys. Rev. Lett. 67, 3812 (1991)]. The geometry of the corrugations can be tuned in a well defined manner by adjusting the overlayer strain. The higher the strain is, the lower the lateral periodicity and the step height are. In addition, the surface of relaxed layers exhibits the structure of the underlying substrate. Finally, on (311)-oriented substrates the relaxation of overlayer strain at least up to 4% occurs without transition toward a three-dimensional agglomerated morphology. This indicates that the surface structure modifies the relaxation paths and mechanisms. On the other hand, the III-V(A)V(B) (311) surfaces are not corrugated. These results are interpreted in terms of the interplay between surface free energy, strain energy, and local-strain fields. We demonstrate that the overlayer strain is the key parameter to control the surface topography. Our work thus provides the means to directly select the interface morphology of semiconductor heterostructures.
引用
收藏
页码:11053 / 11059
页数:7
相关论文
共 50 条
  • [1] Nanometer-Scale III-V CMOS
    del Alamo, J. A.
    2016 COMPOUND SEMICONDUCTOR WEEK (CSW) INCLUDES 28TH INTERNATIONAL CONFERENCE ON INDIUM PHOSPHIDE & RELATED MATERIALS (IPRM) & 43RD INTERNATIONAL SYMPOSIUM ON COMPOUND SEMICONDUCTORS (ISCS), 2016,
  • [2] Nanometer-Scale III-V MOSFETs
    Del Alamo, Jesus A.
    Antoniadis, Dimitri A.
    Lin, Jianqiang
    Lu, Wenjie
    Vardi, Alon
    Zhao, Xin
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2016, 4 (05): : 205 - 214
  • [3] CMOS beyond Si: Nanometer-Scale III-V MOSFETs
    del Alamo, Jesus A.
    Cai, Xiaowei
    Lin, Jianqiang
    Lu, Wenjie
    Vardi, Alon
    Zhao, Xin
    2017 IEEE BIPOLAR/BICMOS CIRCUITS AND TECHNOLOGY MEETING (BCTM), 2017, : 25 - 29
  • [4] Nanometer-scale compositional variations in III-V semiconductor heterostructures characterized by scanning tunneling microscopy
    Yu, ET
    Zuo, SL
    Bi, WG
    Tu, CW
    Allerman, AA
    Biefeld, RM
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1999, 17 (04): : 2246 - 2250
  • [5] State of the Art and Future Perspectives in III-V Nanometer-Scale MOSFETs
    Dey, Saswati
    Biswas, Kalyan
    Sarkar, Angsuman
    PROCEEDINGS OF 3RD IEEE CONFERENCE ON VLSI DEVICE, CIRCUIT AND SYSTEM (IEEE VLSI DCS 2022), 2022, : 170 - 175
  • [6] Defects in III-V semiconductor surfaces
    Ebert, P
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2002, 75 (01): : 101 - 112
  • [7] Hydrogen chemisorption on III-V semiconductor surfaces
    Nannarone, S
    Pedio, M
    SURFACE SCIENCE REPORTS, 2003, 51 (1-8) : 1 - 149
  • [8] III-V compound semiconductor (001) surfaces
    W.G. Schmidt
    Applied Physics A, 2002, 75 : 89 - 99
  • [9] Chalcogenide passivation of III-V semiconductor surfaces
    Bessolov, VN
    Lebedev, MV
    SEMICONDUCTORS, 1998, 32 (11) : 1141 - 1156
  • [10] III-V compound semiconductor (001) surfaces
    Schmidt, WG
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2002, 75 (01): : 89 - 99