CRITICAL CLUSTERING IN THE TWO-DIMENSIONAL VOTER MODEL

被引:0
|
作者
COX, JT [1 ]
GRIFFEATH, D [1 ]
机构
[1] UNIV WISCONSIN, DEPT MATH, MADISON, WI 53706 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:59 / 68
页数:10
相关论文
共 50 条
  • [1] Critical phenomena in the majority voter model on two-dimensional regular lattices
    Acuna-Lara, Ana L.
    Sastre, Francisco
    Raul Vargas-Arriola, Jose
    PHYSICAL REVIEW E, 2014, 89 (05):
  • [2] Interfaces of the two-dimensional voter model in the context of SLE
    Godreche, Claude
    Picco, Marco
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (11):
  • [3] TWO-DIMENSIONAL INDIVIDUAL CLUSTERING MODEL
    Nasreddine, Elissar
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2014, 7 (02): : 307 - 316
  • [4] Study and characterization of interfaces in a two-dimensional generalized voter model
    Bordogna, Clelia M.
    Albano, Ezequiel V.
    PHYSICAL REVIEW E, 2011, 83 (04):
  • [5] Critical behavior of the two-dimensional step model
    Irving, AC
    Kenna, R
    PHYSICAL REVIEW B, 1996, 53 (17): : 11568 - 11571
  • [6] Critical point in a two-dimensional planar model
    Ganguly, R
    PHYSICAL REVIEW E, 1997, 55 (05): : 4982 - 4989
  • [7] Critical behavior of the two-dimensional icosahedron model
    Ueda, Hiroshi
    Okunishi, Kouichi
    Kremar, Roman
    Gendiar, Andrej
    Yunoki, Seiji
    Nishino, Tomotoshi
    PHYSICAL REVIEW E, 2017, 96 (06)
  • [8] Critical point in a two-dimensional planar model
    Phys Rev E., 5-A pt A (4982):
  • [9] CLUSTERING IN THE TWO-DIMENSIONAL CONTINUUM SITE PERCOLATION MODEL
    EDGAL, UF
    WILEY, JD
    CRYSTAL LATTICE DEFECTS AND AMORPHOUS MATERIALS, 1987, 17 (03): : 241 - 247
  • [10] DIFFUSIVE CLUSTERING IN THE 2-DIMENSIONAL VOTER MODEL
    COX, JT
    GRIFFEATH, D
    ANNALS OF PROBABILITY, 1986, 14 (02): : 347 - 370