A SIMULATION STUDY OF SOME CONTEXTUAL CLASSIFICATION METHODS FOR REMOTELY SENSED DATA

被引:22
|
作者
MOHN, E [1 ]
HJORT, NL [1 ]
STORVIK, GO [1 ]
机构
[1] UNIV OSLO,STAT,OSLO 3,NORWAY
来源
关键词
D O I
10.1109/TGRS.1987.289751
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
引用
收藏
页码:796 / 804
页数:9
相关论文
共 50 条
  • [31] CLASSIFICATION METHODS FOR REMOTELY SENSED DATA: LAND USE AND LAND COVER CLASSIFICATION USING VARIOUS COMBINATIONS OF BANDS
    Mahmon, Nur Anis
    Ya'acob, Norsuzila
    Yusof, Azita Laily
    Jaafar, Jasmee
    JURNAL TEKNOLOGI, 2015, 74 (10): : 89 - 96
  • [32] Active Learning: Any Value for Classification of Remotely Sensed Data?
    Crawford, Melba M.
    Tuia, Devis
    Yang, Hsiuhan Lexie
    PROCEEDINGS OF THE IEEE, 2013, 101 (03) : 593 - 608
  • [33] POTENTIAL FOR MESOSCALE CLIMATIC CLASSIFICATION THROUGH REMOTELY SENSED DATA
    PHINNEY, DE
    ARP, GK
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 1975, 56 (01) : 118 - 118
  • [34] Rotational transformation of remotely sensed data for land use classification
    Nirala, ML
    Venkatachalam, G
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2000, 21 (11) : 2185 - 2202
  • [35] SVM-based segmentation and classification of remotely sensed data
    Lizarazo, I.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (24) : 7277 - 7283
  • [36] A Hierarchical Hybrid SVM Method for Classification of Remotely Sensed Data
    Rao, T. Ch Malleswara
    Sankar, G. Jai
    Kumar, T. Roopesh
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2012, 40 (02) : 191 - 200
  • [37] Improved support vector machine and classification for remotely sensed data
    ZHANG RuiMA Jianwen Institute of Remote Sensing ApplicationsChinese Academy of SciencesBeijing ChinaGraduate UniversityChinese Academy of SciencesBeijing China
    遥感学报, 2009, 13 (03) : 437 - 444
  • [38] Land Classification Using Remotely Sensed Data: Going Multilabel
    Karalas, Konstantinos
    Tsagkatakis, Grigorios
    Zervakis, Michael
    Tsakalides, Panagiotis
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (06): : 3548 - 3563
  • [39] The impacts of landscape patterns on the accuracy of remotely sensed data classification
    Lin, Haobo
    Wang, Jindi
    Bo, Yanchen
    Bian, Jing
    PROCEEDINGS OF THE 8TH INTERNATIONAL SYMPOSIUM ON SPATIAL ACCURACY ASSESSMENT IN NATURAL RESOURCES AND ENVIRONMENTAL SCIENCES, VOL II: ACCURACY IN GEOMATICS, 2008, : 219 - 225
  • [40] Study on the characteristics of the supervised classification of remotely sensed data using artificial neural networks
    Paek, KN
    Song, YS
    Chae, HS
    Kim, KE
    IGARSS '97 - 1997 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS I-IV: REMOTE SENSING - A SCIENTIFIC VISION FOR SUSTAINABLE DEVELOPMENT, 1997, : 528 - 530