Sleep Patterns and Homeostatic Mechanisms in Adolescent Mice

被引:53
|
作者
Nelson, Aaron B. [1 ,2 ]
Faraguna, Ugo [1 ]
Zoltan, Jeffrey T. [1 ]
Tononi, Giulio [1 ]
Cirelli, Chiara [1 ]
机构
[1] Univ Wisconsin Madison, Dept Psychiat, Madison, WI 53719 USA
[2] Univ Wisconsin Madison, Neurosci Training Program, Madison, WI 53706 USA
来源
BRAIN SCIENCES | 2013年 / 3卷 / 01期
关键词
adolescence; cerebral cortex; sleep deprivation; slow wave activity;
D O I
10.3390/brainsci3010318
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Sleep changes were studied in mice (n = 59) from early adolescence to adulthood (postnatal days P19-111). REM sleep declined steeply in early adolescence, while total sleep remained constant and NREM sleep increased slightly. Four hours of sleep deprivation starting at light onset were performed from ages P26 through adulthood (>P60). Following this acute sleep deprivation all mice slept longer and with more consolidated sleep bouts, while NREM slow wave activity (SWA) showed high interindividual variability in the younger groups, and increased consistently only after P42. Three parameters together explained up to 67% of the variance in SWA rebound in frontal cortex, including weight-adjusted age and increase in alpha power during sleep deprivation, both of which positively correlated with the SWA response. The third, and strongest predictor was the SWA decline during the light phase in baseline: mice with high peak SWA at light onset, resulting in a large SWA decline, were more likely to show no SWA rebound after sleep deprivation, a result that was also confirmed in parietal cortex. During baseline, however, SWA showed the same homeostatic changes in adolescents and adults, declining in the course of sleep and increasing across periods of spontaneous wake. Thus, we hypothesize that, in young adolescent mice, a ceiling effect and not the immaturity of the cellular mechanisms underlying sleep homeostasis may prevent the SWA rebound when wake is extended beyond its physiological duration.
引用
收藏
页码:318 / 343
页数:26
相关论文
共 50 条
  • [31] Homeostatic control mechanisms
    Waterhouse, Jim
    ANAESTHESIA AND INTENSIVE CARE MEDICINE, 2010, 11 (07): : 274 - 278
  • [32] Homeostatic control mechanisms
    Waterhouse, Jim
    ANAESTHESIA AND INTENSIVE CARE MEDICINE, 2007, 8 (07): : 290 - 294
  • [33] Psychopathy, Machiavellianism, and sleep patterns as predictors of adolescent depression
    Nesa Paknejad
    Amir Ali Mazandarani
    Current Psychology, 2024, 43 : 14201 - 14210
  • [34] Adolescent sleep patterns: Biological, social, and psychological influences
    Jenni, OG
    JOURNAL OF DEVELOPMENTAL AND BEHAVIORAL PEDIATRICS, 2003, 24 (05): : 381 - 382
  • [35] Psychopathy, Machiavellianism, and sleep patterns as predictors of adolescent depression
    Paknejad, Nesa
    Mazandarani, Amir Ali
    CURRENT PSYCHOLOGY, 2024, 43 (16) : 14201 - 14210
  • [36] RENAL HOMEOSTATIC MECHANISMS
    TERRY, BE
    MUELLER, CB
    JOURNAL OF SURGICAL RESEARCH, 1966, 6 (09) : 397 - &
  • [37] HOMEOSTATIC MECHANISMS IN HYPOTHALAMUS
    TACHIBANA, S
    BRAIN RESEARCH, 1969, 13 (03) : 522 - +
  • [38] Homeostatic control mechanisms
    Waterhouse, Jim
    ANAESTHESIA AND INTENSIVE CARE MEDICINE, 2013, 14 (07): : 291 - 295
  • [39] Bifurcations of Sleep Patterns due to Homeostatic and Circadian Variation in a Sleep-Wake Flip-Flop Model
    Athanasouli C.
    Piltz S.H.
    Diniz Behn C.G.
    Booth V.
    SIAM Journal on Applied Dynamical Systems, 2022, 21 (03): : 1893 - 1929
  • [40] COMMENT ON HOMEOSTATIC MECHANISMS
    BARD, J
    JOURNAL OF THEORETICAL BIOLOGY, 1972, 37 (02) : 385 - &