Phased plan for the implementation of the time-resolving magnetic recoil spectrometer on the National Ignition Facility (NIF)

被引:0
作者
Kunimune, J. H. [1 ]
Johnson, M. Gatu [1 ]
Moore, A. S. [2 ]
Trosseille, C. A. [2 ]
Johnson, T. M. [1 ]
Berg, G. P. A. [3 ]
Mackinnon, A. J. [2 ]
Kilkenny, J. D. [2 ]
Frenje, J. A. [1 ]
机构
[1] MIT, PSFC, Cambridge, MA 02139 USA
[2] LLNL, Livermore, CA 94550 USA
[3] Dept Phys & Astron, Notre Dame, IN 46556 USA
关键词
D O I
暂无
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The time-resolving magnetic recoil spectrometer (MRSt) is a transformative diagnostic that will be used to measure the time-resolved neutron spectrum from an inertial confinement fusion implosion at the National Ignition Facility (NIF). It uses a CD foil on the outside of the hohlraum to convert fusion neutrons to recoil deuterons. An ion-optical system positioned outside the NIF target chamber energy-disperses and focuses forward-scattered deuterons. A pulse-dilation drift tube (PDDT) subsequently dilates, un-skews, and detects the signal. While the foil and ion-optical system have been designed, the PDDT requires more development before it can be implemented. Therefore, a phased plan is presented that first uses the foil and ion-optical systems with detectors that can be implemented immediately-namely CR-39 and hDISC streak cameras. These detectors will allow the MRSt to be commissioned in an intermediate stage and begin collecting data on a reduced timescale, while the PDDT is developed in parallel. A CR-39 detector will be used in phase 1 for the measurement of the time-integrated neutron spectra with excellent energy-resolution, necessary for the energy calibration of the system. Streak cameras will be used in phase 2 for measurement of the time-resolved spectrum with limited spectral coverage, which is sufficient to diagnose the time-resolved ion temperature. Simulations are presented that predict the performance of the streak camera detector, indicating that it will achieve excellent burn history measurements at current yields, and good time-resolved ion-temperature measurements at yields above 3 x 10(17). The PDDT will be used for optimal efficiency and resolution in phase 3. (c) 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:5
相关论文
共 22 条
[1]  
Adrian P. J., REV SCI INSTRUM
[2]   Resolving hot spot microstructure using x-ray penumbral imaging (invited) [J].
Bachmann, B. ;
Hilsabeck, T. ;
Field, J. ;
Masters, N. ;
Reed, C. ;
Pardini, T. ;
Rygg, J. R. ;
Alexander, N. ;
Benedetti, L. R. ;
Doppner, T. ;
Forsman, A. ;
Izumi, N. ;
LePape, S. ;
Ma, T. ;
MacPhee, A. G. ;
Nagel, S. ;
Patel, P. ;
Spears, B. ;
Landen, O. L. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (11)
[3]   Design of the ion-optics for the MRSt neutron spectrometer at the National Ignition Facility (NIF) [J].
Berg, G. P. A. ;
Frenje, J. A. ;
Kunimune, J. H. ;
Trosseille, C. A. ;
Couder, M. ;
Kilkenny, J. D. ;
Mackinnon, A. J. ;
Moore, A. S. ;
Waltz, C. S. ;
Wiescher, M. C. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (03)
[4]   The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF [J].
Casey, D. T. ;
Frenje, J. A. ;
Johnson, M. Gatu ;
Seguin, F. H. ;
Li, C. K. ;
Petrasso, R. D. ;
Glebov, V. Yu ;
Katz, J. ;
Magoon, J. ;
Meyerhofer, D. D. ;
Sangster, T. C. ;
Shoup, M. ;
Ulreich, J. ;
Ashabranner, R. C. ;
Bionta, R. M. ;
Carpenter, A. C. ;
Felker, B. ;
Khater, H. Y. ;
LePape, S. ;
MacKinnon, A. ;
McKernan, M. A. ;
Moran, M. ;
Rygg, J. R. ;
Yeoman, M. F. ;
Zacharias, R. ;
Leeper, R. J. ;
Fletcher, K. ;
Farrell, M. ;
Jasion, D. ;
Kilkenny, J. ;
Paguio, R. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (04)
[5]   Nuclear diagnostics for Inertial Confinement Fusion (ICF) plasmas [J].
Frenje, J. A. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (02)
[6]   The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF) [J].
Frenje, J. A. ;
Hilsabeck, T. J. ;
Wink, C. W. ;
Bell, P. ;
Bionta, R. ;
Cerjan, C. ;
Johnson, M. Gatu ;
Kilkenny, J. D. ;
Li, C. K. ;
Seguin, F. H. ;
Petrasso, R. D. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (11)
[7]   Probing high areal-density cryogenic deuterium-tritium implosions using downscattered neutron spectra measured by the magnetic recoil spectrometer [J].
Frenje, J. A. ;
Casey, D. T. ;
Li, C. K. ;
Seguin, F. H. ;
Petrasso, R. D. ;
Glebov, V. Yu. ;
Radha, P. B. ;
Sangster, T. C. ;
Meyerhofer, D. D. ;
Hatchett, S. P. ;
Haan, S. W. ;
Cerjan, C. J. ;
Landen, O. L. ;
Fletcher, K. A. ;
Leeper, R. J. .
PHYSICS OF PLASMAS, 2010, 17 (05)
[8]   Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments [J].
Hatarik, R. ;
Sayre, D. B. ;
Caggiano, J. A. ;
Phillips, T. ;
Eckart, M. J. ;
Bond, E. J. ;
Cerjan, C. ;
Grim, G. P. ;
Hartouni, E. P. ;
Knauer, J. P. ;
Mcnaney, J. M. ;
Munro, D. H. .
JOURNAL OF APPLIED PHYSICS, 2015, 118 (18)
[9]  
Kilkenny J., 2018, LLNLTR759117
[10]   National Ignition Facility core x-ray streak camera [J].
Kimbrough, JR ;
Bell, PM ;
Christianson, GB ;
Lee, FD ;
Kalantar, DH ;
Perry, TS ;
Sewall, NR ;
Wootton, AJ .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (01) :748-750