FROBENIUS-PERRON OPERATORS AND APPROXIMATION OF INVARIANT-MEASURES FOR SET-VALUED DYNAMICAL-SYSTEMS

被引:5
作者
MILLER, WM [1 ]
机构
[1] HOWARD UNIV,DEPT MATH,WASHINGTON,DC 20059
来源
SET-VALUED ANALYSIS | 1995年 / 3卷 / 02期
关键词
FROBENIUS-PERRON OPERATORS; INVARIANT MEASURES; ERGODIC THEORY; SET-VALUED DYNAMICAL SYSTEMS; RELATIONS; RANDOM PERTURBATIONS;
D O I
10.1007/BF01038599
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A set-valued dynamical system F on a Borel space X induces a set-valued operator F on M(X) - the set of probability measures on X. We define a representation of F, each of which induces an explicitly defined selection of F; and use this to extend the notions of invariant measure and Frobenius-Perron operators to set-valued maps. We also extend a method of S. Ulam to Markov finite approximations of invariant measures to the set-valued case and show how this leads to the approximation of T-invariant measures for transformations tau, where T corresponds to the closure of the graph of tau.
引用
收藏
页码:181 / 194
页数:14
相关论文
共 17 条
[1]  
AKIN E, 1993, GENERAL TOPOLOGY DYN
[2]  
AKIN E, PROBABILISTIC ASPECT
[3]  
Aubin J. P., 1991, ANN POL MATH, V54, P85
[4]  
Aubin J.P., 1990, SET-VALUED ANAL, V2, DOI 10.1007/978-0-8176-4848-0
[5]  
Dunford N., 1958, LINEAR OPERATORS 1
[6]   ON THE APPROXIMATION OF INVARIANT-MEASURES [J].
HUNT, FY ;
MILLER, WM .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (1-2) :535-548
[7]  
HUNT FY, 1992, APPROXIMATING INVARI
[8]  
HUNT FY, WEAK APPROXIMATION I
[9]  
Kifer Y., 1988, RANDOM PERTURBATIONS
[10]  
LASOTA A, 1982, PROBABILISTIC PROPER