LORENTZIAN 3-METRICS WITH DEGENERATE RICCI TENSORS

被引:5
作者
MCMANUS, DJ
机构
[1] Department of Mathematics, Statistics and Computing Science, Dalhousie University, Halifax
关键词
D O I
10.1063/1.531125
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A classification of Lorentzian three-metrics whose Ricci tensor satisfies Rij = λ1gij + λ2v ivj with λ1 and λ 2(≠0) constant where vivi=κ(=0 or ±1) is given. An explicit coordinate representation is given for all the metrics that admit a G4 group as their maximal isometry group. Those metrics that admit a G3 as their maximal isometry group belong to either Bianchi class VI0, or VII0, or VIII, or IX when κ ≠ 0, and to either Bianchi class III, or IV, or VI0, VIh, or VIII when κ=0. An explicit coordinate representation is given for all the inhomogeneous solutions in the case κ≠0. © 1995 American Institute of Physics.
引用
收藏
页码:1353 / 1364
页数:12
相关论文
共 17 条
[1]  
Arnowitt R, 1962, GRAVITATION INTRO CU
[2]   ISOMETRY GROUPS OF 3-DIMENSIONAL LORENTZIAN METRICS [J].
BONA, C ;
COLL, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (02) :873-884
[3]   ISOMETRY GROUPS OF 3-DIMENSIONAL RIEMANNIAN METRICS [J].
BONA, C ;
COLL, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (01) :267-272
[4]   INVARIANT APPROACH TO GEOMETRY OF SPACES IN GENERAL RELATIVITY [J].
BRANS, CH .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (01) :94-&
[5]  
Cartan E., 1946, LECONS GEOMETRIE ESP, V2nd
[6]  
ELLIS GFR, 1971, 47 P E FERM SUMM SCH
[7]  
ELLIS GFR, 1973, CARGESE LECTURES PHY, V6
[8]   DYADIC ANALYSIS OF SPATIALLY HOMOGENEOUS WORLD MODELS [J].
ESTABROO.FB ;
WAHLQUIS.HD ;
BEHR, CG .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (04) :497-&
[9]   A REVIEW OF THE GEOMETRICAL EQUIVALENCE OF METRICS IN GENERAL-RELATIVITY [J].
KARLHEDE, A .
GENERAL RELATIVITY AND GRAVITATION, 1980, 12 (09) :693-707
[10]  
Kramer D., 1980, EXACT SOLUTIONS EINS