ALMOST EVERYWHERE CONVERGENCE OF MULTIPLE FOURIER-SERIES OF MONOTONIC FUNCTIONS

被引:0
作者
DYACHENKO, MI
机构
来源
MATHEMATICS OF THE USSR-SBORNIK | 1992年 / 73卷 / 01期
关键词
D O I
10.1070/SM1992v073n01ABEH002532
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let m be a natural number, m greater-than-or-equal-to 2. Then we shall say that a function f(t) of period 2pi in each variable is monotonic if there exist an open rectangular parallelepiped (a, b) = PI1m(a(j), b(j)) subset-or-equal-to [-pi, pi)m and numbers gamma1, ... , gammam, each of which is either 0 or 1 , such that f(t) = 0 for t is-an-element-or [-pi, pi)m\(a, b), and if x, y is-an-element-of (a, b) and (-1)(gammaj)x(j) less-than-or-equal-to (-1)(gammaj)y(j) for j = 1 , ... , m , then f(x) less-than-or-equal-to f(y). The main result of this paper is that the multiple trigonometric Fourier series of an integrable monotonic function is Pringsheim convergent almost everywhere, in particular at each point of continuity of f(t) in the interior of (a, b) .
引用
收藏
页码:11 / 25
页数:15
相关论文
共 3 条
  • [1] Golubov B I, 1974, SIB MAT ZH, V15, P767
  • [2] ZHIZHIASHVILI LV, 1971, DOKL AKAD NAUK SSSR+, V199, P1234
  • [3] Zygmund A, 1959, TRIGONOMETRIC SERIES, VI