MORE ON THE DECODER ERROR-PROBABILITY FOR REED-SOLOMON CODES

被引:27
作者
CHEUNG, KM
机构
[1] Jet Propulsion Lab, Pasadena, CA,, USA
关键词
Mathematical Techniques--Combinatorial Mathematics - Probability;
D O I
10.1109/18.32169
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A combinatorial technique similar to the principle of inclusion and exclusion is used to obtain an exact formula for PE(u), the decoder error probability for Reed-Solomon codes. The PE(u) for the (255, 223) Reed-Solomon code used by NASA and for the (31, 15) Reed-Solomon code (JTIDS code) are calculated using the exact formula and are observed to approach the Qs of the codes rapidly as u gets large. An upper bound for the expression |(PE(u)/Q - 1| is derived and shown to decrease nearly exponentially as u increases.
引用
收藏
页码:895 / 900
页数:6
相关论文
共 7 条
[1]  
ASSMUS EF, 1965, AFCRL65332 AIR FORC
[2]  
CHEUNG KM, 1987, THESIS CALTECH PASAD
[3]  
Forney G. D., 1966, CONCATENATED CODES
[4]  
Hall M., 1967, COMBINATORIAL THEORY
[5]  
KASAMI T, 1966, IEEE T INFORM THEORY, V12, P274
[6]  
Mac Williams F. J., 1983, THEORY ERROR CORRECT
[7]   ON THE DECODER ERROR-PROBABILITY FOR REED-SOLOMON CODES [J].
MCELIECE, RJ ;
SWANSON, L .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1986, 32 (05) :701-703