POSITIVE SOLUTIONS FOR A SINGULAR THIRD ORDER BOUNDARY VALUE PROBLEM

被引:1
作者
Hederson, Johnny [1 ]
Luca, Rodica [2 ]
Nelms, Charles, Jr. [1 ]
Yang, Aijun [1 ,3 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
[2] Gh Asachi Tech Univ, Dept Math, Iasi 700506, Romania
[3] Zhejiang Univ Technol, Coll Sci, Hangzhou 310023, Zhejiang, Peoples R China
来源
DIFFERENTIAL EQUATIONS & APPLICATIONS | 2015年 / 7卷 / 04期
关键词
fixed point theorem; boundary value problem; singular;
D O I
10.7153/dea-07-25
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of positive solutions is shown for the third order boundary value problem, u"' (x,u), 0 < x < 1, u(0) u(1) = u"(1) 0, where f (x,y) is singular at x = 0, x = 1, y = 0, and may be singular at y = infinity. The method involves application of a fixed point theorem for operators that are decreasing with respect to a cone.
引用
收藏
页码:437 / 447
页数:11
相关论文
共 27 条
[1]  
Agarwal R.P., 1999, POSITIVE SOLUTIONS D
[2]   Singular problems on the infinite interval modelling phenomena in draining flows [J].
Agarwal, RP ;
O'Regan, D .
IMA JOURNAL OF APPLIED MATHEMATICS, 2001, 66 (06) :621-635
[3]   DIFFUSION AND REACTION WITH MONOTONE KINETICS [J].
BANDLE, C ;
SPERB, RP ;
STAKGOLD, I .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1984, 8 (04) :321-333
[4]  
BAXLEY J. V., 1988, SIAM J APPL MATH, V48, P855
[5]   Two problems from draining flows involving third-order ordinary differential equations [J].
Bernis, F ;
Peletier, LA .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (02) :515-527
[6]   SOLVABILITY OF SOME NONLINEAR BOUNDARY-VALUE PROBLEMS [J].
BOBISUD, LE ;
OREGAN, D ;
ROYALTY, WD .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (09) :855-869
[7]  
BOBISUD LE, 1988, APPL ANAL, V28, P245
[8]   SOME SINGULAR, NON-LINEAR DIFFERENTIAL-EQUATIONS ARISING IN BOUNDARY-LAYER THEORY [J].
CALLEGARI, A ;
NACHMAN, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 64 (01) :96-105
[9]   SINGULAR NONLINEAR BOUNDARY-VALUE-PROBLEMS FOR HIGHER-ORDER ORDINARY DIFFERENTIAL-EQUATIONS [J].
ELOE, PW ;
HENDERSON, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 17 (01) :1-10
[10]   SINGULAR NONLINEAR BOUNDARY-VALUE PROBLEMS FOR 2ND-ORDER ORDINARY DIFFERENTIAL-EQUATIONS [J].
GATICA, JA ;
OLIKER, V ;
WALTMAN, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 79 (01) :62-78