OXIDATIVE STRESS-INDUCED CATARACT - MECHANISM OF ACTION

被引:753
作者
SPECTOR, A
机构
[1] Biochem./Molec. Biology Laboratory, Department of Ophthalmology, Coll. Phys./Surgs. of Columbia Univ., New York
[2] Biochem./Molec. Biol. Laboratory, Department of Ophthalmology, Columbia U. Coll. of Phys./Surgeons, New York, NY 10032
关键词
REDOX; H2O2; DNA; EPITHELIAL CELL DEATH; TRANSPORT;
D O I
10.1096/fasebj.9.12.7672510
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This review examines the hypothesis that oxidative stress is an initiating factor for the development of maturity onset cataract and describes the events leading to lens opacification. Data are reviewed that indicate that extensive oxidation of lens protein and lipid is associated with human cataract found in older individuals whereas little oxidation (and only in membrane components) is found in control subjects of similar age, A significant proportion of lenses and aqueous humor taken from cataract patients have elevated H2O2 levels. Because H2O2, at concentrations found in cataract, can cause lens opacification and produces a pattern of oxidation similar to that found in cataract, it is concluded that H2O2 is the major oxidant involved in cataract formation. This viewpoint is further supported by experiments showing that cataract formation in organ culture caused by photochemically generated superoxide radical, H2O2, and hydroxyl radical is completely prevented by the addition of a GSH peroxidase mimic. The damage caused by oxidative stress does not appear to be reversible and there is an inverse relationship between the stress period and the time required for loss of transparency and degeneration of biochemical parameters such as ATP, GPD, nonprotein thiol, and hydration, After exposure to oxidative stress, the redox set point of the single layer of the lens epithelial cells (but not the remainder of the lens) quickly changes, going from a strongly reducing to an oxidizing environment. Almost concurrent with this change is extensive damage to DNA and membrane pump systems, followed by loss of epithelial cell viability and death by necrotic and apoptotic mechanisms. The data suggest that the epithelial cell layer is the initial site of attack by oxidative stress and that involvement of the lens fibers follows, leading to cortical cataract.
引用
收藏
页码:1173 / 1182
页数:10
相关论文
共 89 条
  • [1] LIPID-PEROXIDATION IN CATARACT OF THE HUMAN
    BHUYAN, KC
    BHUYAN, DK
    PODOS, SM
    [J]. LIFE SCIENCES, 1986, 38 (16) : 1463 - 1471
  • [2] BOETTNER EA, 1962, INVEST OPHTH VISUAL, V1, P776
  • [3] STUDIES ON SODIUM-POTASSIUM-ACTIVATED ADENOSINETRIPHOSPHATASE .6. ITS ROLE IN CATION TRANSPORT IN LENS OF CAT, CALF AND RABBIT
    BONTING, SL
    HAWKINS, NM
    CARAVAGGIO, LL
    [J]. ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1963, 101 (01) : 47 - &
  • [4] ROLE OF NON-ENZYMATIC GLYCOSYLATION IN EXPERIMENTAL CATARACT FORMATION
    CHIOU, SH
    CHYLACK, LT
    BUNN, HF
    KINOSHITA, JH
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1980, 95 (02) : 894 - 901
  • [5] CHYLACK LT, 1994, PRINCIPLES PRACTICE, V1, P591
  • [6] CUI XL, 1993, EXP EYE RES, V57, P156
  • [7] DEJONG WW, 1988, ADV POSTTRANSLATIONA, P95
  • [8] BIOSYNTHETIC CAPACITY OF THE HUMAN LENS UPON AGING
    DEVRIES, ACJ
    VERMEER, MA
    HENDRIKS, ALAM
    BLOEMENDAL, H
    COHEN, LH
    [J]. EXPERIMENTAL EYE RESEARCH, 1991, 53 (04) : 519 - 524
  • [9] IDENTIFICATION OF BETA-CARBOLINES ISOLATED FROM FLUORESCENT HUMAN LENS PROTEINS
    DILLON, J
    SPECTOR, A
    NAKANISHI, K
    [J]. NATURE, 1976, 259 (5542) : 422 - 423
  • [10] DILLON J, 1990, PHOTOCHEM PHOTOBIOL, V51, P849