DISCRETE CONCAVITY FOR POTENTIAL GAMES

被引:12
作者
Ui, Takashi [1 ]
机构
[1] Yokohama Natl Univ, Fac Econ, Hodogaya Ku, 79-3 Tokiwadai, Yokohama, Kanagawa 2408501, Japan
关键词
Potential game; uniqueness of equilibrium; discrete concavity;
D O I
10.1142/S0219198908001820
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proposes a discrete analogue of concavity appropriate for potential games with discrete strategy sets. It guarantees that every Nash equilibrium maximizes a potential function.
引用
收藏
页码:137 / 143
页数:7
相关论文
共 19 条
[1]   Multimodularity, convexity, and optimization properties [J].
Altman, E ;
Gaujal, B ;
Hordijk, A .
MATHEMATICS OF OPERATIONS RESEARCH, 2000, 25 (02) :324-347
[2]   Discrete convexity and equilibria in economies with indivisible goods and money [J].
Danilov, V ;
Koshevoy, G ;
Murota, K .
MATHEMATICAL SOCIAL SCIENCES, 2001, 41 (03) :251-273
[3]   Strategic complements and substitutes, and potential games [J].
Dubey, P ;
Haimanko, O ;
Zapechelnyuk, A .
GAMES AND ECONOMIC BEHAVIOR, 2006, 54 (01) :77-94
[4]  
Favati P., 1990, RICERCA OPERATIVA, V53, P3
[5]   Notes on L-/M-convex functions and the separation theorems [J].
Fujishige, S ;
Murota, K .
MATHEMATICAL PROGRAMMING, 2000, 88 (01) :129-146
[7]   Potential games [J].
Monderer, D ;
Shapley, LS .
GAMES AND ECONOMIC BEHAVIOR, 1996, 14 (01) :124-143
[8]   Note on multimodularity and L-convexity [J].
Murota, K .
MATHEMATICS OF OPERATIONS RESEARCH, 2005, 30 (03) :658-661
[9]   Discrete convex analysis [J].
Murota, K .
MATHEMATICAL PROGRAMMING, 1998, 83 (03) :313-371
[10]   M-convex function on generalized polymatroid [J].
Murota, K ;
Shioura, A .
MATHEMATICS OF OPERATIONS RESEARCH, 1999, 24 (01) :95-105