Partial Pole Placement in LMI Region

被引:2
作者
Ou, Liuli [1 ]
Han, Shaobo [2 ]
Wang, Yongji [1 ]
Dong, Shuai [1 ]
Liu, Lei [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Automat, Key Lab Minist Educ Image Proc & Intelligent Cont, Wuhan 430074, Hubei, Peoples R China
[2] Jilin Univ, Coll Elect Sci & Engn, Changchun 130012, Jilin, Peoples R China
基金
国家教育部博士点专项基金资助;
关键词
Convex optimization - Poles and zeros - Poles;
D O I
10.1155/2014/840128
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new approach for pole placement of single-input system is proposed in this paper. Noncritical closed loop poles can be placed arbitrarily in a specified convex region when dominant poles are fixed in anticipant locations. The convex region is expressed in the form of linear matrix inequality (LMI), with which the partial pole placement problem can be solved via convex optimization tools. The validity and applicability of this approach are illustrated by two examples.
引用
收藏
页数:5
相关论文
共 16 条
[1]  
Boyd S., 1994, STUDIES APPL NUMERIC
[2]   Robust pole placement in LMI regions [J].
Chilali, M ;
Gahinet, P ;
Apkarian, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (12) :2257-2270
[3]   H infinity design with pole placement constraints: An LMI approach [J].
Chilali, M ;
Gahinet, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (03) :358-367
[4]   Partial Pole Placement with Controller Optimization [J].
Datta, Subashish ;
Chakraborty, Debraj ;
Chaudhuri, Balarko .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (04) :1051-1056
[5]   Partial Pole Placement with Minimum Norm Controller [J].
Datta, Subashish ;
Chaudhuri, Balarko ;
Chakraborty, Debraj .
49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, :5001-5006
[6]   Ellipsoidal approximation of the stability domain of a polynomial [J].
Henrion, D ;
Peaucelle, D ;
Arzelier, D ;
Sebek, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (12) :2255-2259
[7]   Positive polynomials and robust stabilization with fixed-order controllers [J].
Henrion, D ;
Sebek, M ;
Kucera, V .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (07) :1178-1186
[8]  
Kailath, 1980, LINEAR SYSTEMS
[9]   An improved LMI condition for robust D-stability of uncertain polytopic systems [J].
Leite, VJS ;
Peres, PLD .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (03) :500-504
[10]   Pole placement in a union of regions with prespecified subregion allocation [J].
Maamri, N. ;
Bachelier, O. ;
Mehdi, D. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2006, 72 (01) :38-46