INTERPOLATING FUNCTIONS OF MINIMAL NORM, STAR-INVARIANT SUBSPACES, AND KERNELS OF TOEPLITZ-OPERATORS

被引:16
作者
DYAKONOV, KM
机构
关键词
INNER FUNCTION; INTERPOLATING BLASCHKE PRODUCT; STAR-INVARIANT SUBSPACE; EXTREME POINT; TOEPLITZ OPERATOR;
D O I
10.2307/2159482
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proved that for each inner function theta there exists an interpolating sequence {z(n)} in the disk such that sup(n)\theta\(z(n))\ < 1, but every function g in H infinity with g(z(n)) = theta(z(n)) (n = 1, 2, ... ) satisfies \\g\\ infinity greater-than-or-equal-to 1. Some results are obtained concerning interpolation in the star-invariant subspace H-2 - theta H-2 . This paper also contains a "geometric" result connected with kernels of Toeplitz operators.
引用
收藏
页码:1007 / 1013
页数:7
相关论文
共 10 条
[1]  
Douglas R.G., 1998, GRADUATE TEXTS MATH, V179
[2]  
Dyakonov K.M., 1987, GEOMETRIC PROBLEMS T, P52
[3]  
DYAKONOV KM, 1990, SIB MAT ZH, V31, P64
[4]  
Gamelin T. W, 1969, UNIFORM ALGEBRAS
[5]  
Hoffman K., 1962, BANACH SPACES ANAL F
[6]  
HRUSCEV SV, 1981, LECT NOTES MATH, V864, P214
[7]  
KOOSIS P, 1980, INTRO HP SPACES
[8]  
NIKOLSKII NK, 1984, LECT NOTES MATH, V1043, P569
[9]   EXTREMAL INTERPOLATORY FUNCTIONS IN H-INFINITY [J].
OYMA, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 64 (02) :272-276
[10]   INTERPOLATING FUNCTIONS WITH MINIMAL NORM [J].
STRAY, A ;
OYMA, KO .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 68 (01) :75-78