POTENTIAL-ENERGY SURFACES FOR WATER DYNAMICS .2. VIBRATIONAL-MODE EXCITATIONS, MIXING, AND RELAXATIONS

被引:77
作者
OHMINE, I [1 ]
TANAKA, H [1 ]
机构
[1] KYOTO UNIV,DIV MOLEC ENGN,KYOTO 606,JAPAN
关键词
D O I
10.1063/1.459344
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dynamical behavior of liquid water is investigated by analyzing the potential energy surface involved. Multidimensional properties of the potential energy surface are explored in terms of vibrational mode excitations at its local energy minima, called inherent structures. The vibrational mode dynamics, especially mechanism of mode relaxation and structure transitions, is analyzed. It shows very strong excitation energy dependence and mode dependence. There are three kinds of vibrational coupling among modes. For excitations of energy near the room temperature, most modes (more than 90% of total modes) individually interact with only one or two other modes, and yield near recurrence of the mode energy in a few tens picoseconds (very slow relaxation). Spatially localized modes in the intermediate frequency range couple with many delocalized modes, yielding fast relaxation. The coupling is governed by atomic displacement overlaps and frequency matching. Each mode couples with nearby frequency or double frequency modes through the Fermi resonance. Lowest frequency modes almost always lead to transitions from a potential energy well to neighbor potential wells, called inherent structure transitions. In high energy excitation, some intermediate frequency modes also yield such transitions. There exist very low energy paths involving single or few water molecule displacements at almost every inherent structure, indicating that certain facile molecular movements occur even in very low temperature states. Different energy excitations of a low frequency mode result in different inherent structure transitions; transitions caused by high energy excitations involve many large molecular displacements. These inherent structure transitions are the source of the water binding structural reorganization dynamics. Significance of these vibrational mode dynamics in the water dynamics is discussed. © 1990 American Institute of Physics.
引用
收藏
页码:8138 / 8147
页数:10
相关论文
共 67 条
[1]   THE ONSET OF NONRIGID DYNAMICS AND THE MELTING TRANSITION IN AR-7 [J].
AMAR, FG ;
BERRY, RS .
JOURNAL OF CHEMICAL PHYSICS, 1986, 85 (10) :5943-5954
[2]  
Angell C. A, 1982, WATER COMPREHENSIVE, V7, P1, DOI DOI 10.1007/978-1-4757-6952-4
[3]  
ANGELL CA, 1988, NATURE, V331, P296
[4]  
[Anonymous], 2005, STRUCTURE PROPERTIES
[5]   A TEST OF THE RANDOM NETWORK MODEL OF WATER USING MOLECULAR-DYNAMICS SIMULATION DATA [J].
BELCH, AC ;
RICE, SA ;
SCEATS, MG .
CHEMICAL PHYSICS LETTERS, 1981, 77 (03) :455-459
[6]   THE DISTRIBUTION OF RINGS OF HYDROGEN-BONDED MOLECULES IN A MODEL OF LIQUID WATER [J].
BELCH, AC ;
RICE, SA .
JOURNAL OF CHEMICAL PHYSICS, 1987, 86 (10) :5676-5682
[7]   FINDING SADDLES ON MULTIDIMENSIONAL POTENTIAL SURFACES [J].
BERRY, RS ;
DAVIS, HL ;
BECK, TL .
CHEMICAL PHYSICS LETTERS, 1988, 147 (01) :13-17
[8]   CONNECTIVITY OF HYDROGEN-BONDS IN LIQUID WATER [J].
BLUMBERG, RL ;
STANLEY, HE ;
GEIGER, A ;
MAUSBACH, P .
JOURNAL OF CHEMICAL PHYSICS, 1984, 80 (10) :5230-5241
[9]   ON FINDING TRANSITION-STATES [J].
CERJAN, CJ ;
MILLER, WH .
JOURNAL OF CHEMICAL PHYSICS, 1981, 75 (06) :2800-2806
[10]   SN2 REACTION PROFILES IN THE GAS-PHASE AND AQUEOUS-SOLUTION [J].
CHANDRASEKHAR, J ;
SMITH, SF ;
JORGENSEN, WL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1984, 106 (10) :3049-3050