NEW DECODING ALGORITHM FOR REED-MULLER CODES

被引:0
作者
TOKIWA, K
SUGIMURA, T
KASAHARA, M
NAMEKAWA, T
机构
关键词
D O I
10.1109/TIT.1982.1056554
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:779 / 787
页数:9
相关论文
共 17 条
[1]  
Carmichael R. D., 1956, INTRO THEORY GROUPS
[2]  
CHEN CL, 1971, IEEE T INFORM THEORY, V17, P332, DOI 10.1109/TIT.1971.1054629
[3]  
CHEN CL, 1972, IEEE T INFORM THEORY, V18, P539
[4]   ON A CLASS OF MAJORITY-LOGIC DECODABLE CYCLIC CODES [J].
GOETHALS, JM ;
DELSARTE, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (02) :182-+
[5]   ON NUMBER OF INFORMATION SYMBOLS IN DIFFERENCE-SET CYCLIC CODES [J].
GRAHAM, RL ;
MACWILLIAMS, J .
BELL SYSTEM TECHNICAL JOURNAL, 1966, 45 (07) :1057-+
[6]   A CLASS OF OPTIMAL MINIMUM ODD-WEIGHT-COLUMN SEC-DED CODES [J].
HSIAO, MY .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1970, 14 (04) :395-&
[7]  
HWANG K, 1979, COMPUTER ARITHMETIC
[8]  
KOBAYASHI H, 1978, IEEE T COMPUT, V27, P753, DOI 10.1109/TC.1978.1675184
[9]  
Macwilliams F., 1986, THEORY ERROR CORRECT
[10]  
Muller D.E., 1954, T IRE PROF GROUP ELE, V3, P6, DOI 10.1109/IREPGELC.1954.6499441