GENERALIZED BOLTZMANN-EQUATION IN A MANIFESTLY COVARIANT RELATIVISTIC STATISTICAL-MECHANICS

被引:4
作者
BURAKOVSKY, L [1 ]
HORWITZ, LP [1 ]
机构
[1] BAR ILAN UNIV, DEPT PHYS, RAMAT GAN, ISRAEL
关键词
D O I
10.1007/BF02055334
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the relativistic statistical mechanics of an ensemble of N events with motion in space-time parametrized by an invariant ''historical time'' tau. We generalize the approach of Yang and Yao, based on the Wigner distribution functions and the Bogoliubov hypotheses to find approximate dynamical equations for the kinetic state of any nonequilibrium system, to the relativistic case, and obtain a manifestly covariant Boltzmann-type equation which is a relativistic generalization of the Boltzmann-Uehling-Uhlenbeck (BUU) equation for indistinguishable particles. This equation is then used to prove the H-theorem for evolution in tau. In the equilibrium limit, the covariant forms of the standard statistical mechanical distributions are obtained. We introduce two-body interactions by means of the direct action potential V(q), where q is an invariant distance in the Minkowski space-time. The two-body correlations are taken to have the support in a relative 0(2, 1)-invariant subregion of the full spacelike region. The expressions for rile energy density and pressure are obtained and shown to have the same forms (in terms of an invariant distance parameter) as those of the nonrelativistic theory and to provide the correct nonrelativistic limit.
引用
收藏
页码:1335 / 1358
页数:24
相关论文
共 31 条