A SINGLY EXPONENTIAL STRATIFICATION SCHEME FOR REAL SEMIALGEBRAIC VARIETIES AND ITS APPLICATIONS

被引:81
作者
CHAZELLE, B
EDELSBRUNNER, H
GUIBAS, LJ
SHARIR, M
机构
[1] UNIV ILLINOIS,URBANA,IL 61801
[2] STANFORD UNIV,STANFORD,CA 94305
[3] NYU,NEW YORK,NY 10003
[4] TEL AVIV UNIV,IL-69978 TEL AVIV,ISRAEL
基金
美国国家科学基金会;
关键词
D O I
10.1016/0304-3975(91)90261-Y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper describes an effective procedure for stratifying a real semi-algebraic set into cells of constant description size. The attractive feature of our method is that the number of cells produced is singly exponential in the number of input variables. This compares favorably with the doubly exponential size of Collins' decomposition. Unlike Collins' construction, however, our scheme does not produce a cell complex but only a smooth stratification. Nevertheless, we are able to apply our results in interesting ways to problems of point location and geometric optimization.
引用
收藏
页码:77 / 105
页数:29
相关论文
共 48 条
[1]  
[Anonymous], 1976, P 3 ACM S SYMBOLIC A, DOI DOI 10.1145/800205.806319
[2]  
[Anonymous], 1987, EATCS MONOGRAPHS THE
[3]   CYLINDRICAL ALGEBRAIC DECOMPOSITION .2. AN ADJACENCY ALGORITHM FOR THE PLANE [J].
ARNON, DS ;
COLLINS, GE ;
MCCALLUM, S .
SIAM JOURNAL ON COMPUTING, 1984, 13 (04) :878-889
[4]   SOME DYNAMIC COMPUTATIONAL GEOMETRY PROBLEMS [J].
ATALLAH, MJ .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1985, 11 (12) :1171-1181
[5]  
BOCHNAK J., 1987, ERGEB MATH GRENZGEB, V12
[6]   EUCLIDS ALGORITHM AND THEORY OF SUBRESULTANTS [J].
BROWN, WS ;
TRAUB, JF .
JOURNAL OF THE ACM, 1971, 18 (04) :505-&
[7]  
Canny J., 1987, 28th Annual Symposium on Foundations of Computer Science (Cat. No.87CH2471-1), P39, DOI 10.1109/SFCS.1987.1
[8]   SOME TECHNIQUES FOR GEOMETRIC SEARCHING WITH IMPLICIT SET REPRESENTATIONS [J].
CHAZELLE, B .
ACTA INFORMATICA, 1987, 24 (05) :565-582
[9]   A DETERMINISTIC VIEW OF RANDOM SAMPLING AND ITS USE IN GEOMETRY [J].
CHAZELLE, B ;
FRIEDMAN, J .
COMBINATORICA, 1990, 10 (03) :229-249
[10]   CONVEX PARTITIONS OF POLYHEDRA - A LOWER BOUND AND WORST-CASE OPTIMAL ALGORITHM [J].
CHAZELLE, B .
SIAM JOURNAL ON COMPUTING, 1984, 13 (03) :488-507