ON THE EQUIVALENCE OF THE INCREMENTAL HARMONIC-BALANCE METHOD AND THE HARMONIC BALANCE-NEWTON RAPHSON METHOD

被引:63
作者
FERRI, AA [1 ]
机构
[1] DUKE UNIV,DURHAM,NC 27706
来源
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME | 1986年 / 53卷 / 02期
关键词
Compendex;
D O I
10.1115/1.3171780
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Mechanics
引用
收藏
页码:455 / 457
页数:3
相关论文
共 6 条
[1]  
Lau S.L., 1981, ASME J APPLIED MECHA, V48, P959
[2]   A VARIABLE PARAMETER INCREMENTATION METHOD FOR DYNAMIC INSTABILITY OF LINEAR AND NON-LINEAR ELASTIC-SYSTEMS [J].
LAU, SL ;
CHEUNG, YK ;
WU, SY .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1982, 49 (04) :849-853
[3]  
PIERRE C, 1985, ASME, V52, P693
[4]  
PIERRE C, 1985, ASME, V52, P958
[5]   HIGHER APPROXIMATION OF STEADY OSCILLATIONS IN NON-LINEAR SYSTEMS WITH SINGLE DEGREE OF FREEDOM (SUGGESTED MULTI-HARMONIC BALANCE METHOD) [J].
TAMURA, H ;
TSUDA, Y ;
SUEOKA, A .
BULLETIN OF THE JSME-JAPAN SOCIETY OF MECHANICAL ENGINEERS, 1981, 24 (195) :1616-1625
[6]   LIMIT-CYCLE OSCILLATIONS OF A NONLINEAR ROTORCRAFT MODEL [J].
TONGUE, BH .
AIAA JOURNAL, 1984, 22 (07) :967-974