LARGE-Z AND LARGE-N DEPENDENCE OF ATOMIC ENERGIES FROM RENORMALIZATION OF THE LARGE-DIMENSION LIMIT

被引:36
作者
KAIS, S
SUNG, SM
HERSCHBACH, DR
机构
[1] Department of Chemistry, Harvard University, Cambridge, Massachusetts
关键词
D O I
10.1002/qua.560490511
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
By combining Hartree-Fock results for nonrelativistic ground-state energies of N-electron atoms with analytic expressions for the large-dimension limit, we have obtained a simple renormalization procedure. For neutral atoms, this yields energies typically threefold more accurate than the Hartree-Fock approximation. Here, we examine the dependence on Z and N of the renormalized energies E(N, Z) for atoms and cations over the range Z, N = 2 --> 290. We find that this gives for large Z = N an expansion of the same form as the Thomas-Fermi statistical model, E --> Z(7/3)(Co + C(1)Z(-1/3) + C(2)Z(-2/3) + C(3)Z(-3/3) + ...), with similar values of the coefficients for the three leading terms. Use of the renormalized large-D limit enables us to derive three further terms. This provides an analogous expansion for the correlation energy of the for Delta E --> Z(4/3)(Delta C-3 + Delta C(5)Z(-2/3) + Delta C(6)Z(-3/3) + ...); comparison with accurate values of Delta E available for the range Z less than or equal to 36 indicates the mean error is only about 10%. Oscillatory terms in E and Delta E are also evaluated. (C) 1994 John Wiley gr Sons, Inc.
引用
收藏
页码:657 / 674
页数:18
相关论文
共 31 条
[1]   RADIUS OF CONVERGENCE AND ANALYTIC BEHAVIOR OF THE 1/Z EXPANSION [J].
BAKER, JD ;
FREUND, DE ;
HILL, RN ;
MORGAN, JD .
PHYSICAL REVIEW A, 1990, 41 (03) :1247-1273
[2]  
BALLINGER RA, 1955, PHILOS MAG, V46, P246
[3]   GROUND-STATE CORRELATION ENERGIES FOR ATOMIC IONS WITH 3 TO 18 ELECTRONS [J].
CHAKRAVORTY, SJ ;
GWALTNEY, SR ;
DAVIDSON, ER ;
PARPIA, FA ;
FISCHER, CF .
PHYSICAL REVIEW A, 1993, 47 (05) :3649-3670
[4]   GROUND-STATE CORRELATION ENERGIES FOR 2-ELECTRON TO 10-ELECTRON ATOMIC IONS [J].
DAVIDSON, ER ;
HAGSTROM, SA ;
CHAKRAVORTY, SJ ;
UMAR, VM ;
FISCHER, CF .
PHYSICAL REVIEW A, 1991, 44 (11) :7071-7083
[5]   ATOMIC-BINDING-ENERGY OSCILLATIONS [J].
ENGLERT, BG ;
SCHWINGER, J .
PHYSICAL REVIEW A, 1985, 32 (01) :47-63
[6]  
ENGLERT BG, 1985, PHYS REV A, V32, P36, DOI 10.1103/PhysRevA.32.36
[7]   SEMICLASSICAL ATOM [J].
ENGLERT, BG ;
SCHWINGER, J .
PHYSICAL REVIEW A, 1985, 32 (01) :26-35
[8]   LARGE-ORDER DIMENSIONAL PERTURBATION-THEORY FOR 2-ELECTRON ATOMS [J].
GOODSON, DZ ;
LOPEZCABRERA, M ;
HERSCHBACH, DR ;
MORGAN, JD .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (11) :8481-8496
[9]  
Gradshteyn I., 2015, TABLES INTEGRALS SER, V7th
[10]  
HERSCHBACH DR, 1992, DIMENSIONAL SCALING